高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多分辨率融合输入的U型视网膜血管分割算法

梁礼明 詹涛 雷坤 冯骏 谭卢敏

梁礼明, 詹涛, 雷坤, 冯骏, 谭卢敏. 多分辨率融合输入的U型视网膜血管分割算法[J]. 电子与信息学报, 2023, 45(5): 1795-1806. doi: 10.11999/JEIT220470
引用本文: 梁礼明, 詹涛, 雷坤, 冯骏, 谭卢敏. 多分辨率融合输入的U型视网膜血管分割算法[J]. 电子与信息学报, 2023, 45(5): 1795-1806. doi: 10.11999/JEIT220470
LIANG Liming, ZHAN Tao, LEI Kun, FENG Jun, TAN Lumin. Multi-resolution Fusion Input U-shaped Retinal Vessel Segmentation Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1795-1806. doi: 10.11999/JEIT220470
Citation: LIANG Liming, ZHAN Tao, LEI Kun, FENG Jun, TAN Lumin. Multi-resolution Fusion Input U-shaped Retinal Vessel Segmentation Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1795-1806. doi: 10.11999/JEIT220470

多分辨率融合输入的U型视网膜血管分割算法

doi: 10.11999/JEIT220470
基金项目: 国家自然科学基金(51365017, 61463018),江西省自然科学基金面上项目(20192BAB205084),江西省教育厅科学技术研究重点项目(GJJ170491)
详细信息
    作者简介:

    梁礼明:男,教授,研究方向为机器学习、医学影像和系统建模等

    詹涛:男,硕士生,研究方向为医学图像分割

    雷坤:男,硕士生,研究方向为医学图像分割

    冯骏:男,硕士生,研究方向为医学图像分割

    谭卢敏:女,硕士,讲师,研究方向为医学影像

    通讯作者:

    谭卢敏 gztlm2017@163.com

  • 中图分类号: R318; TP391

Multi-resolution Fusion Input U-shaped Retinal Vessel Segmentation Algorithm

Funds: The National Natural Science Foundation of China (51365017, 61463018), The General Project of Jiangxi Provincial Natural Science Foundation (20192BAB205084), The Science and Technology Research Key Project, Department of Education, Jiangxi Province (GJJ170491)
  • 摘要: 针对视网膜血管拓扑结构不规则、形态复杂和尺度变化多样的特点,该文提出一种多分辨率融合输入的U型网络(MFIU-Net),旨在实现视网膜血管精准分割。设计以多分辨率融合输入为主干的粗略分割网络,生成高分辨率特征。采用改进的ResNeSt代替传统卷积,优化血管分割边界特征;将并行空间激活模块嵌入其中,捕获更多的语义和空间信息。构架另一U型精细分割网络,提高模型的微观表示和识别能力。一是底层采用多尺度密集特征金字塔模块提取血管的多尺度特征信息。二是利用特征自适应模块增强粗、细网络之间的特征融合,抑制不相关的背景噪声。三是设计面向细节的双重损失函数融合,以引导网络专注于学习特征。在眼底数据用于血管提取的数字视网膜图像(DRIVE)、视网膜结构分析(STARE)和儿童心脏与健康研究(CHASE_DB1)上进行实验,其准确率分别为97.00%, 97.47%和97.48%,灵敏度分别为82.73%, 82.86%和83.24%,曲线下的面积(AUC)值分别为98.74%, 98.90%和98.93%。其模型整体性能优于现有算法。
  • 图  1  MFIU-Net总体架构

    图  2  改进的ResNeSt模块

    图  3  并行空间激活模块

    图  4  多尺度密集特征金字塔模块

    图  5  各阶段预处理图像

    图  6  不同算法视网膜血管分割结果

    图  7  不同算法血管分割细节比较

    图  8  不同算法的ROC曲线

    图  9  不同算法的F1性能曲线

    表  1  对比实验结果

    $ {\lambda _1} $$ {\lambda _2} $AccSeSpF1AUC
    0.30.70.96910.79820.98680.82490.9865
    0.40.60.96890.81530.98360.82100.9850
    0.50.50.96960.78660.98720.81940.9859
    0.60.40.96880.82690.98250.82320.9860
    0.70.30.97000.82730.98360.82790.9874
    下载: 导出CSV

    表  2  不同算法的性能指标(%)

    方法DRIVESTARECHASE_DB1
    AccSeSpF1AUCAccSeSpF1AUCAccSeSpF1AUC
    文献[23]96.8475.4398.8980.6898.4397.2473.3399.2280.2998.4897.1970.7898.9676.0398.41
    文献[24]96.9579.0098.6881.9698.6597.3576.8099.0681.6398.6597.2172.7498.8676.6798.46
    文献[25]96.9778.2298.7881.9298.6697.3977.6199.0382.0198.7697.1972.0498.8876.3698.32
    文献[18]96.8578.1598.6581.3098.3797.2577.1898.9181.1298.5397.0878.0098.3677.1198.10
    文献[26]96.9479.5098.6282.0098.6497.3378.7098.8781.8698.7597.2277.3598.5677.8398.44
    文献[27]96.9581.5998.4382.4198.6997.3478.9298.8781.9898.7997.2381.1698.3078.6498.62
    MFIU-Net97.0082.7398.3682.7998.7497.4782.8698.6883.3798.9097.4883.2498.4380.5798.93
    下载: 导出CSV

    表  3  DRIVE数据集对比结果

    方法AccSeSpF1AUC
    文献[7]0.95680.81150.97800.82720.9810
    文献[8]0.96920.80270.98520.82060.9850
    文献9]0.95810.79910.98130.82930.9823
    文献[10]0.95650.78530.98180.82030.9834
    文献[26]0.95610.78560.98100.82020.9793
    文献[28]0.95660.79630.98000.82370.9802
    文献[29]0.95730.77350.98380.82050.9816
    文献[30]0.98580.79410.97980.82160.9847
    文献[31]0.95810.80460.98050.83030.9827
    MFIU-Net0.97000.82730.98360.82790.9874
    下载: 导出CSV

    表  4  STARE数据集对比结果

    方法AccSeSpF1AUC
    文献[8]0.97350.79510.98830.82160.9856
    文献[9]0.96730.81860.98440.83790.9881
    文献[10]0.96680.80020.98640.82890.9900
    文献[28]0.96410.75950.98780.81430.9832
    文献[29]0.97010.77150.98860.81460.9881
    文献[30]0.96400.75980.98780.81420.9824
    文献[31]0.96650.79140.98700.82760.9864
    MFIU-Net0.97470.82860.98680.83370.9890
    下载: 导出CSV

    表  5  CHASE_DB1数据集对比结果

    方法AccSeSpF1AUC
    文献[7]0.96640.80750.98410.82780.9872
    文献[9]0.96700.82390.98130.81910.9871
    文献[10]0.96670.81320.98400.82930.9893
    文献[26]0.96560.79780.98180.80310.9839
    文献[28]0.96100.81550.97520.78830.9804
    文献[29]0.96550.79700.98230.80730.9851
    文献[30]0.96080.81760.97040.78920.9865
    文献[31]0.96730.84020.98010.82480.9874
    TP0.97480.83240.98430.80570.9893
    下载: 导出CSV

    表  6  消融实验分析(%)

    方法DRIVESTARECHASE_DB1
    AccSeSpF1AUCAccSeSpF1AUCAccSeSpF1AUC
    M196.8475.4398.8980.6898.4097.2473.3399.2280.2998.5397.1970.7898.9676.0398.41
    M296.8977.8898.7281.4498.5697.3575.1199.2081.3098.7597.2475.2698.7277.4798.43
    M396.9180.0998.5782.1398.5897.3877.9098.9981.9898.6997.3079.7698.4878.8298.65
    M496.9580.4398.5382.1898.6197.4080.8898.7782.6698.8597.4181.4398.4979.8998.83
    M596.9981.6998.4782.6698.6797.4381.5298.7482.9198.8897.4581.8498.5080.1998.87
    M697.0082.7398.3682.7998.7497.4782.8698.6883.3798.9097.4883.2498.4380.5798.93
    下载: 导出CSV
  • [1] 王娟, 赵建勇, 童龙. 老年2型糖尿病患者并发周围神经病变的影响因素分析[J]. 中国慢性病预防与控制, 2019, 27(1): 52–54. doi: 10.16386/j.cjpccd.issn.1004-6194.2019.01.014

    WANG Juan, ZHAO Jianyong, and TONG Long. Analysis of the influencing factors of peripheral neuropathy in elderly patients with type 2 diabetes[J]. China Journal of Chronic Disease Prevention and Control, 2019, 27(1): 52–54. doi: 10.16386/j.cjpccd.issn.1004-6194.2019.01.014
    [2] YU Linfang, QIN Zhen, ZHUANG Tianming, et al. A framework for hierarchical division of retinal vascular networks[J]. Neurocomputing, 2020, 392: 221–232. doi: 10.1016/j.neucom.2018.11.113
    [3] KHAWAJA A, KHAN T M, KHAN M A U, et al. A multi-scale directional line detector for retinal vessel segmentation[J]. Sensors, 2019, 19(22): 4949. doi: 10.3390/s19224949
    [4] KHAWAJA A, KHAN T M, NAVEEDK, et al. An improved retinal vessel segmentation framework using frangi filter coupled with the probabilistic patch based denoiser[J]. IEEE Access, 2019, 7: 164344–164361. doi: 10.1109/access.2019.2953259
    [5] 田丰, 李莹, 王静. 基于多尺度小波变换融合的视网膜血管分割[J]. 光学学报, 2021, 41(4): 0410001. doi: 10.3788/AOS202141.0410001

    TIAN Feng, LI Ying, and WANG Jing. Retinal blood vessel segmentation based on multi-scale wavelet transform fusion[J]. Acta Optica Sinica, 2021, 41(4): 0410001. doi: 10.3788/AOS202141.0410001
    [6] 梁礼明, 盛校棋, 蓝智敏, 等. 基于多尺度滤波的视网膜血管分割算法[J]. 计算机应用与软件, 2019, 36(10): 190–196,204. doi: 10.3969/j.issn.1000-386x.2019.10.033

    LIANG Liming, SHENG Xiaoqi, LAN Zhimin, et al. Retinal vessels segmentation algorithom based on multi-scale filtering[J]. Computer Applications and Software, 2019, 36(10): 190–196,204. doi: 10.3969/j.issn.1000-386x.2019.10.033
    [7] YANG Xin, LI Zhiqiang, GUO Yingqing, et al. DCU-Net: A deformable convolutional neural network based on cascade U-net for retinal vessel segmentation[J]. Multimedia Tools and Applications, 2022, 81(11): 15593–15607. doi: 10.1007/s11042-022-12418-w
    [8] CHEN Yixuan, DONG Yuhan, ZHANG Yi, et al. RNA-Net: Residual nonlocal attention network for retinal vessel segmentation[C]. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, Canada, 2020: 1560–1565.
    [9] WANG Dongyi, HAYTHAM A, POTTENBURGH J, et al. Hard attention net for automatic retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(12): 3384–3396. doi: 10.1109/jbhi.2020.3002985
    [10] ZHANG Yuan, HE Miao, CHEN Zhineng, et al. Bridge-Net: Context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation[J]. Expert Systems with Applications, 2022, 195: 116526. doi: 10.1016/j.eswa.2022.116526
    [11] IBTEHAZ N and RAHMAN M S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121: 74–87. doi: 10.1016/j.neunet.2019.08.025
    [12] ZHANG Hang, WU Chongruo, ZHANG Zhongyue, et al. ResNeSt: Split-attention networks[EB/OL]. https://arxiv.org/abs/2004.08955, 2022.
    [13] LI Di, DHARMAWAN D A, NG B P, et al. Residual U-Net for retinal vessel segmentation[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 1425–1429.
    [14] ZHOU Tianyan, ZHAO Yong, and WU Jian. ResNeXt and Res2Net structures for speaker verification[C]. 2021 IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, 2021: 301–307.
    [15] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [16] WANG Chang, ZHAO Zongya, REN Qiongqiong, et al. Dense U-net based on patch-based learning for retinal vessel segmentation[J]. Entropy, 2019, 21(2): 168. doi: 10.3390/e21020168
    [17] HU Peijun, LI Xiang, TIAN Yu, et al. Automatic pancreas segmentation in CT images with distance-based saliency-aware DenseASPP network[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1601–1611. doi: 10.1109/jbhi.2020.3023462
    [18] ABRAHAM N and KHAN N M. A novel focal tversky loss function with improved attention U-Net for lesion segmentation[C]. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019: 683–687.
    [19] ZHANG Guokai, SHEN Xiaoang, CHEN Sirui, et al. DSM: A deep supervised multi-scale network learning for skin cancer segmentation[J]. IEEE Access, 2019, 7: 140936–140945. doi: 10.1109/access.2019.2943628
    [20] STAAL J, ABRAMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501–509. doi: 10.1109/tmi.2004.825627
    [21] HOOVER A D, KOUZNETSOVA V, and GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical Imaging, 2000, 19(3): 203–210. doi: 10.1109/42.845178
    [22] OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the computer-assisted image analysis of the retina (CAIAR) program[J]. Investigative Ophthalmology & Visual Science, 2009, 50(5): 2004–2010. doi: 10.1167/iovs.08-3018
    [23] ALOM Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net (R2u-Net) for medical image segmentation[EB/OL]. https://arxiv.org/abs/1802.06955, 2018.
    [24] ZHOU Zongwei, SIDDIQUEE M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/tmi.2019.2959609
    [25] YU Changqian, XIAO Bin, GAO Changxin, et al. Lite-HRNet: A lightweight high-resolution network[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10435–10445.
    [26] ZHUANG Juntang. LadderNet: Multi-path networks based on U-Net for medical image segmentation[EB/OL]. https://arxiv.org/abs/1810.07810, 2018.
    [27] LI Di and RAHARDJA S. BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation[J]. Computer Methods and Programs in Biomedicine, 2021, 205: 106070. doi: 10.1016/j.cmpb.2021.106070
    [28] JIN Qiangguo, MENG Zhaopeng, PHAM T D, et al. DUNet: A deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 2019, 178: 149–162. doi: 10.1016/j.knosys.2019.04.025
    [29] LI Xiang, JIANG Yuchen, LI Minglei, et al. Lightweight attention convolutional neural network for retinal vessel image segmentation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1958–1967. doi: 10.1109/tii.2020.2993842
    [30] LV Yan, MA Hui, LI Jianian, et al. Attention guided U-Net with atrous convolution for accurate retinal vessels segmentation[J]. IEEE Access, 2020, 8: 32826–32839. doi: 10.1109/access.2020.2974027
    [31] YUAN Yuchen, ZHANG Lei, WANG Lituan, et al. Multi-level attention network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(1): 312–323. doi: 10.1109/jbhi.2021.3089201
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  880
  • HTML全文浏览量:  634
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-07-13
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回