Processing math: 1%
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能反射面辅助认知无线电多天线安全传输方法

张军 许文婉 黄小钧

张军, 许文婉, 黄小钧. 可重构智能反射面辅助认知无线电多天线安全传输方法[J]. 电子与信息学报, 2023, 45(5): 1706-1713. doi: 10.11999/JEIT220466
引用本文: 张军, 许文婉, 黄小钧. 可重构智能反射面辅助认知无线电多天线安全传输方法[J]. 电子与信息学报, 2023, 45(5): 1706-1713. doi: 10.11999/JEIT220466
ZHANG Jun, XU Wenwan, HUANG Xiaojun. Cognitive Radio Multiple-Input Multiple-Output Wireless Secure Transmission with Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1706-1713. doi: 10.11999/JEIT220466
Citation: ZHANG Jun, XU Wenwan, HUANG Xiaojun. Cognitive Radio Multiple-Input Multiple-Output Wireless Secure Transmission with Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1706-1713. doi: 10.11999/JEIT220466

可重构智能反射面辅助认知无线电多天线安全传输方法

doi: 10.11999/JEIT220466
基金项目: 国家自然科学基金(62071247)
详细信息
    作者简介:

    张军:男,博士,博士生导师,教授,研究方向为下一代移动通信理论与关键技术、大规模MIMO、无人机通信、人工智能通信、毫米波通信、RIS辅助通信、物理层安全等

    许文婉:女,硕士生,研究方向为可重构智能反射面、认知无线电、大规模MIMO系统、物理层安全

    黄小钧:女,硕士生,研究方向为可重构智能反射面、物理层安全

    通讯作者:

    张军 zhangjun@njupt.edu.cn

  • 中图分类号: TN92

Cognitive Radio Multiple-Input Multiple-Output Wireless Secure Transmission with Reconfigurable Intelligent Surface

Funds: The National Natural Science Foundation of China (62071247)
  • 摘要: 考虑一个可重构智能反射面(RIS)辅助的频谱共享认知无线电(CR)多输入多输出(MIMO)安全通信系统。在存在窃听者的情况下,配备有多根天线的次级发送机与次级用户进行通信。首先,利用统计信道状态信息,得到了系统遍历安全速率的确定性等价表达式。然后,在满足总发送功率约束和干扰功率约束的条件下,提出一种结合泰勒级数展开法和拉格朗日乘子法的交替优化算法,联合优化了发送协方差矩阵和RIS相移矩阵。最后,仿真结果验证了所提算法的有效性。
  • 预计到2030年,第5代无线通信系统将无法满足人们的大部分通信需求,因此研发人员开始了第6代无线通信系统(the 6th Generation wireless communication system, 6G)的研发[1]。可重构智能反射面(Reconfigurable Intelligent Surface, RIS)被认为是6G的关键技术之一,能够实现可控的智能无线传播环境[2-4]。RIS由大量无源反射元件组成,成本低、复杂度低、安装灵活[5-7]。此外,RIS也被应用于物理层安全(Physical Layer Security, PLS)中,通过控制传播环境来提高安全无线通信性能[8,9]。而随着无线通信设备的日益普及,移动通信的数据流量近年来呈指数级增长[10],频谱已成为一种非常稀缺的资源。认知无线电(Cognitive Radio, CR)被认为是一种可有效提高频谱效率的方法,通过重新分配未占用的频率,有效缓解无线设备的增长带来的频谱资源稀缺问题[11]。因此,将RIS应用到CR通信系统成为当前研究热点之一。

    近年来,CR和RIS技术相结合的研究也取得了诸多成果。文献[12]研究了RIS辅助下行多输入单输出(Multiple-Input Single-Output, MISO)CR通信中如何最大化次级用户(Secondary User, SU)速率,在总发射功率和干扰功率约束下,同时提高系统的频谱效率和能量效率。考虑到半双工通信未能真正充分利用无线电频谱资源,文献[13]研究了RIS辅助全双工CR系统中频谱效率的最大化问题,提高次级网络性能的同时有效降低对主用户(Primary User, PU)的干扰。然而,当SU位于PU附近时,干扰较强,SU的可实现速率很难达到。文献[14]进一步研究了对称和非对称交叉干扰链路下SU的速率最大化问题。前述文献在研究CR无线通信系统时,都将RIS作为类似中继的反射装备,文献[15]则研究了基于RIS的两种部署方案,即作为反射装备和以接入点的形式进行通信。

    注意到,在上述关于RIS辅助CR系统的研究中,均未考虑无线通信系统中的安全问题,当存在窃听用户时,问题求解变得更复杂。文献[16]假设理想信道状态信息(Channel State Information, CSI)已知,研究了CR-MISO窃听信道的保密率最大化问题。文献[17]利用非理想CSI最大化SU可实现的保密率。文献[18]将系统扩展到多输入多输出(Multiple-Input Multiple-Output, MIMO)的情况,研究窃听者CSI在3种不同情况下的保密率:理想CSI、估计误差有界的非理想CSI和无CSI。

    然而,在RIS辅助的频谱共享CR MIMO无线安全通信系统中,还存在诸多问题。一方面,由RIS的特性可知,RIS本身并不具备信号处理能力,且大量的反射单元导致相关的级联信道数目剧增,因此,在RIS辅助的频谱共享CR MIMO系统中,很难通过直接估计信道来获取CSI;另一方面,快速时变信道是无线通信系统中一种常见的情况,瞬时CSI难以获取且很容易过时。虽然上述部分文献考虑到了安全无线通信问题,但均利用瞬时CSI(理想或非理想)来设计系统参数。相对于瞬时CSI来说,统计CSI更容易获取,且系统开销较小,不需要对每个瞬时值计算系统参数,复杂度较低。因此,利用统计CSI研究无线安全传输方法具有重要实际意义。为此,本文开展了基于统计CSI的RIS辅助CR MIMO无线安全传输方法研究。主要贡献如下:

    (1)在空间相关莱斯信道中,利用大系统近似理论得到系统遍历安全速率的确定性等价式,并推导了确定等价式最大化的最优发送协方差矩阵。

    (2)在发送协方差矩阵固定时,提出一种次优的相移矩阵设计方法,并提出一种发送协方差矩阵和相移矩阵交替优化算法。

    图1考虑了一个RIS辅助的频谱共享CR MIMO系统信道模型。次级发送机(Secondary Transmitter, ST), PU, SU和窃听者(Eavesdropper, Eve)分别配备了M, D, N, E根天线,RIS由L个被动反射元件组成。当ST传输保密消息时,ST与PU, SU, Eve之间的直接链路被阻挡,只能接收RIS反射的信号。Eve会窃取ST发送给SU的信息,造成SU的信息泄露。

    图 1  RIS辅助频谱共享CR MIMO无线通信系统

    假设 {{\boldsymbol{H}}_{\rm{a}}} \in {\mathbb{C}^{L \times M}} , {{\boldsymbol{H}}_{\rm{b}}} \in {\mathbb{C}^{N \times L}}, {{\boldsymbol{H}}{\rm{_e}}} \in {\mathbb{C}^{E \times L}}, {{\boldsymbol{H}}_{\rm{P}}} \in {\mathbb{C}^{D \times L}}分别表示ST-RIS, RIS-SU, RIS-Eve, RIS-PU之间的信道矩阵。SU和Eve的接收信号可以分别表示为

    {{\boldsymbol{y}}_{\rm{u}}} = \left( {{{\boldsymbol{H}}_{\rm{b}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\rm{a}}}} \right){\boldsymbol{s}} + {{\boldsymbol{z}}_{\rm{u}}} \tag{1a}
    {{\boldsymbol{y}}_{\rm{e}}} = \left( {{{\boldsymbol{H}}_{\rm{e}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\rm{a}}}} \right){\boldsymbol{s}} + {{\boldsymbol{z}}_{\rm{e}}} \tag{1b}

    其中,{\boldsymbol{s}}是均值为 0 、协方差矩阵为{\boldsymbol{Q}} = {{\rm{E}}} \{ {\boldsymbol{s}}{{\boldsymbol{s}}^{\rm{H}}}\}的高斯向量信号,{\boldsymbol{\varPhi }} = {\text{diag}}({[{\theta _1},{\theta _2},\cdots,{\theta _L}]^{\rm{T}}})表示相移矩阵,对角线元素{\theta _l} = {{\text{e}}^{{\text{j}}{\vartheta _i}}},且{\vartheta _l} \in [0,2\pi ){{\boldsymbol{z}}_{\rm{u}}} {{\boldsymbol{z}}_{\rm{e}}} 分别为SU和Eve处的加性高斯白噪声,其均值为 0 ,方差为{\sigma _{\rm{u}}}^2{{\boldsymbol{I}}_N}, {\sigma _{\rm{e}}}^2{{\boldsymbol{I}}_E},本文假设{\sigma _{\rm{u}}} = {\sigma _{\rm{e}}} = \sigma

    本文考虑莱斯信道模型,采用Kronecker模型来表征MIMO信道的空间相关性\left( {w = {\rm{a,P,b,e}}} \right)

    {{\boldsymbol{H}}_w} = {{{\tilde {\boldsymbol{H}}}}_w} + {{{\bar {\boldsymbol{H}}}}_w} = {\boldsymbol{R}}_w^{\tfrac{1}{2}}{{\boldsymbol{X}}_w}{\boldsymbol{{T}}}_w^{\tfrac{1}{2}} + {{\boldsymbol{\bar {H}}}_w} (2)

    其中, {{\boldsymbol{R}}_w} {{\boldsymbol{T}}_w} 为确定性非负矩阵,分别表征各下行链路信道的空间相关性,{{{\bar {\boldsymbol{H}}}}_w}是确定性视距分量(Line of Sight, LoS),{{\boldsymbol{X}}_{\rm{a}}}{\text{ = }}[1{\text{/}}\sqrt M {X_{{\rm{a}},ij}}], {{\boldsymbol{X}}_{\rm{P}}}{\text{ = }} [1{\text{/}}\sqrt L {X_{{\text{P}},ij}}], {{\boldsymbol{X}}_{\rm{b}}}{\text{ = }} [1{\text{/}}\sqrt L {X_{{\rm{b}},ij}}], {{\boldsymbol{X}}_{\rm{e}}}{\text{ = }}[1{\text{/}}\sqrt L {X_{{\rm{e}},ij}}]为信道的随机成分,{X_{w,ij}}独立同分布,具有0均值和单位方差。

    此外,用{\alpha _w}表示4条链路的信道增益系数,{\kappa _w}表示相应的莱斯因子,做归一化为

    {\text{tr}}\left( {{{\boldsymbol{R}}_{\rm{a}}}} \right) = L,{\text{tr}}\left( {{{\boldsymbol{T}}_{\rm{a}}}} \right) = \frac{{M{\alpha _{\rm{a}}}}}{{{\kappa _{\rm{a}}} + 1}},{\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\rm{a}}}{\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}} \right) = \frac{{{\kappa _{\rm{a}}}{\alpha _{\rm{a}}}L}}{{{\kappa _{\rm{a}}} + 1}} \tag{3a}
    {\text{tr}}\left( {{{\boldsymbol{R}}_{\rm{P}}}} \right) = D,{\text{tr}}\left( {{{\boldsymbol{T}}_{\rm{P}}}} \right) = \frac{{{L^2}{\alpha _{\rm{P}}}}}{{{\kappa _{\rm{P}}} + 1}},{\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\rm{P}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}} \right) = \frac{{{\kappa _{\rm{P}}}{\alpha _{\rm{P}}}DL}}{{{\kappa _{\rm{P}}} + 1}} \tag{3b}
    {\text{tr}}\left( {{{\boldsymbol{R}}_{\rm{b}}}} \right) = N,{\text{tr}}\left( {{{\boldsymbol{T}}_{\rm{b}}}} \right) = \frac{{{L^2}{\alpha _{\rm{b}}}}}{{{\kappa _{\rm{b}}} + 1}},{\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\rm{b}}}{\boldsymbol{\bar H}}_{\text{b}}^{\text{H}}} \right) = \frac{{{\kappa _{\rm{b}}}{\alpha _{\rm{b}}}NL}}{{{\kappa _{\rm{b}}} + 1}} \tag{3c}
    {\text{tr}}\left( {{{\boldsymbol{R}}_{\rm{e}}}} \right) = E,{\text{tr}}\left( {{{\boldsymbol{T}}_{\rm{e}}}} \right) = \frac{{{L^2}{\alpha _{\rm{e}}}}}{{{\kappa _{\rm{e}}} + 1}},{\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\rm{e}}}{\boldsymbol{\bar H}}_{\text{e}}^{\text{H}}} \right) = \frac{{{\kappa _{\rm{e}}}{\alpha _{\rm{e}}}EL}}{{{\kappa _{\rm{e}}} + 1}} \tag{3d}

    只有保证ST对PU的干扰在一定阈值内,ST和SU才可以在同一频段进行通信。因此,总功率约束(Total Power Constraint, TPC)和干扰功率约束(Interference Power Constraint, IPC)应满足

    {\text{tr}}\left( {\boldsymbol{Q}} \right) \le M{P_{\rm{T}}} \tag{4a}
    {\text{E}}\left\{ {{\text{tr}}\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\rm{a}}}{\boldsymbol{Q}}{{({{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}})}^{\text{H}}}} \right)} \right\} \le M{P_{\text{I}}} \tag{4b}

    其中,{P_{\text{T}}} > 0表示ST处总发射功率最大值,{P_{\text{I}}}是对PU的最大干扰功率阈值,\text{E}\{\cdot\}表示求期望。

    本文假设PU,SU和Eve的统计CSI已知,即能获得\{ {{\boldsymbol{R}}_w},{{\boldsymbol{T}}_w},{{\boldsymbol{\bar H}}_w},{\kappa _w},{\alpha _w}(w = {\text{a}},{\text{P}},{\text{b}},{\text{e}})\} 。可以得到SU和Eve的速率分别为

    \begin{split} & {R_{\text{u}}}\left( {{\boldsymbol{Q}},{\boldsymbol{\varPhi }}} \right) \\ & = {{\rm{E}}} \left\{ {{{\log }_2}\det \left( {{{\boldsymbol{I}}_N} + \dfrac{1}{{{\sigma ^2}}}{{\boldsymbol{H}}_{\text{b}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{{\left( {{{\boldsymbol{H}}_{\text{b}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}} \right)}^{\text{H}}}} \right)} \right\}\\ \end{split} \tag{5a}
    \begin{split} & {R_{\text{e}}}\left( {{\boldsymbol{Q}},{\boldsymbol{\varPhi }}} \right) \\ & = {{\rm{E}}} \left\{ {{{\log }_2}\det \left( {{{\boldsymbol{I}}_E} + \dfrac{1}{{{\sigma ^2}}}{{\boldsymbol{H}}_{\text{e}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{{\left( {{{\boldsymbol{H}}_{\text{e}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}} \right)}^{\text{H}}}} \right)} \right\}\\ \end{split} \tag{5b}

    因此,系统的遍历安全速率可以表示为

    {C_{\text{s}}} = {\left( {{R_{\text{u}}} - {R_{\text{e}}}} \right)^ + } (6)

    其中, {(a)^ + } = \max \{ 0,a\}

    为了评估RIS辅助MIMO CR通信系统的保密性能,本文在满足TPC和IPC的条件下,通过最大化可达安全速率,联合设计ST处的发送协方差矩阵和RIS处的相移矩阵。优化问题表述为

    \begin{split} & \mathop {\max }\limits_{{\boldsymbol{Q}},{\boldsymbol{\varPhi }}} {\text{ }}{C_{\text{s}}}, \\ &\quad{\text{s}}.{\text{t}}.{\text{ tr}}\left( {\boldsymbol{Q}} \right) \le M{P_{\text{T}}},{\boldsymbol{Q}}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \succ } { {\textit{0}}}, \\ & \qquad\quad {\text{E}}\left\{ {{\text{tr}}\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{{\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}} \right)}^{\text{H}}}} \right)} \right\} \le M{P_{\text{I}}}, \\ & \qquad\quad {\boldsymbol{\varPhi }} = {\text{diag}}\left( {{{\left[ {{\theta _1},{\theta _2},\cdots,{\theta _L}} \right]}^{\text{T}}}} \right), \\ & \qquad\quad {\theta _l} = {\text{e}}{}^{{\text{j}}{\vartheta _l}},{\vartheta _l} \in \left[ {0,2\pi } \right) \end{split} (7)

    上述优化问题是非凸的,且变量{\boldsymbol{Q}}{\boldsymbol{\varPhi }}在目标函数和IPC中均是耦合的,很难同时进行优化。因此在第3节提出了一种交替优化(Alternating Optimization, AO)算法联合优化{\boldsymbol{Q}}{\boldsymbol{\varPhi }}

    本节利用统计CSI来解决问题式(7),首先固定{\boldsymbol{Q}}求最优的{\boldsymbol{\varPhi }},然后固定{\boldsymbol{\varPhi }}获得最优的{\boldsymbol{Q}}

    为求解问题式(7),首先根据文献[19],获得式(6)的确定性等价表达式,当M, L, N, E均趋于无穷时,比率N/L, L/M, E/ME/L保持不变。式(6)中遍历安全速率的确定性等价表达式

    \begin{split} {{\bar C}_{\text{s}}} =& {\log _2}\det \left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{b}}}{\boldsymbol{Q}}} \right) + {\log _2}\det \left( {{{\boldsymbol{I}}_N} + \frac{{{b_2}}}{{{\sigma ^2}}}{{\boldsymbol{R}}_{\text{b}}}} \right) \\ & + {\log _2}\det \left( {{{\boldsymbol{I}}_L} + {b_1}{{\boldsymbol{\varPhi }}^{\text{H}}}\left( {{\boldsymbol{\bar H}}_{\text{b}}^{\text{H}}{\boldsymbol{\varXi }}_{\text{b}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{b}}} + {{\tilde b}_2}{{\boldsymbol{T}}_{\text{b}}}} \right){\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}} \right) \\ & - {\log _2}\det \left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{e}}}{\boldsymbol{Q}}} \right) - {\log _2}\det \left( {{{\boldsymbol{I}}_E} + \frac{{{e_2}}}{{{\sigma ^2}}}{{\boldsymbol{R}}_{\text{e}}}} \right) \\ & - {\log _2}\det \left( {{{\boldsymbol{I}}_L} + {e_1}{{\boldsymbol{\varPhi }}^{\text{H}}}\left( {{\boldsymbol{\bar H}}_{\text{e}}^{\text{H}}{\boldsymbol{\varXi }}_{\text{e}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{e}}} + {{\tilde e}_2}{{\boldsymbol{T}}_{\text{e}}}} \right){\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}} \right) \\ & - M{b_1}{{\tilde b}_1} - L{b_2}{{\tilde b}_2} + M{e_1}{{\tilde e}_1} + L{e_2}{{\tilde e}_2} \\[-10pt] \end{split} (8)

    其中,\{ {b_1},{\tilde b_1},{b_2},{\tilde b_2}\} \{ {e_1},{\tilde e_1},{e_2},{\tilde e_2}\}

    {b_1} = \frac{1}{M}{\text{tr}}\left( {{{\left( {{{\boldsymbol{I}}_M} + {\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{\boldsymbol{\varTheta }}_{\text{b}}^{ - 1}{{\boldsymbol{\varPsi }}_{\text{b}}}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q}} + {{\tilde b}_1}{{\boldsymbol{T}}_{\text{a}}}{\boldsymbol{Q}}} \right)}^{ - 1}}{{\boldsymbol{T}}_{\text{a}}}{\boldsymbol{Q}}} \right) \tag{9a}
    {b_2} = \frac{1}{L}{\text{tr}}\left( {\left( {{b_1}{{\boldsymbol{R}}_{\text{a}}}{\boldsymbol{\varTheta }}_{\text{b}}^{ - 1} + {{\boldsymbol{\varPi }}_{\text{b}}}{\boldsymbol{\varPi }}_{\text{b}}^{\text{H}}} \right){{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{b}}}{\boldsymbol{\varPhi }}} \right) \tag{9b}
    {\tilde b_1} = \frac{1}{M}{\text{tr}}\left( {\left( {{\boldsymbol{\varTheta }}_{\text{b}}^{ - 1}{{\boldsymbol{\varPsi }}_{\text{b}}} - {{\boldsymbol{\varPsi }}_{\text{b}}}{{\boldsymbol{\varPi }}_{\text{b}}}{\boldsymbol{\varPi }}_{\text{b}}^{\text{H}}{\boldsymbol{\varPsi }}_{\text{b}}^{\text{H}}} \right){{\boldsymbol{R}}_{\text{a}}}} \right) \tag{9c}
    \begin{split} \,{{\tilde b}_2} = &\frac{1}{L}{\text{tr}}\left( {\left( {{\boldsymbol{\varXi }}_{\text{b}}^{ - 1} - {\boldsymbol{\varXi }}_{\text{b}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{b}}}{b_1}{{\boldsymbol{R}}_{\text{a}}}{\boldsymbol{\varTheta }}_{\text{b}}^{ - 1}{\boldsymbol{\bar H}}_{\text{b}}^{\text{H}}{\boldsymbol{\varXi }}_{\text{b}}^{ - 1}} \right){{\boldsymbol{R}}_{\text{b}}}} \right) \\ &- \frac{1}{L}{\text{tr}}\left( {\left( {{\boldsymbol{\varXi }}_{\text{b}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{b}}}{{\boldsymbol{\varPi }}_{\text{b}}}{\boldsymbol{\varPi }}_{\text{b}}^{\text{H}}{\boldsymbol{\bar H}}_{\text{b}}^{\text{H}}{\boldsymbol{\varXi }}_{\text{b}}^{ - 1}} \right){{\boldsymbol{R}}_{\text{b}}}} \right) \end{split} \tag{9d}
    {e_1} = \frac{1}{M}{\text{tr}}\left( {{{\left( {{{\boldsymbol{I}}_M} + {\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{\boldsymbol{\varTheta }}_{\text{e}}^{ - 1}{{\boldsymbol{\varPsi }}_{\text{e}}}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q}} + {{\tilde e}_1}{{\boldsymbol{T}}_{\text{a}}}{\boldsymbol{Q}}} \right)}^{ - 1}}{{\boldsymbol{T}}_{\text{a}}}{\boldsymbol{Q}}} \right) \tag{10a}
    {e_2} = \frac{1}{L}{\text{tr}}\left( {\left( {{e_1}{{\boldsymbol{R}}_{\text{a}}}{\boldsymbol{\varTheta }}_{\text{e}}^{ - 1} + {{\boldsymbol{\varPi }}_{\text{e}}}{\boldsymbol{\varPi }}_{\text{e}}^{\text{H}}} \right){{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{e}}}{\boldsymbol{\varPhi }}} \right) \tag{10b}
    {\tilde e_1} = \frac{1}{M}{\text{tr}}\left( {\left( {{\boldsymbol{\varTheta }}_{\text{e}}^{ - 1}{{\boldsymbol{\varPsi }}_{\text{e}}} - {{\boldsymbol{\varPsi }}_{\text{e}}}{{\boldsymbol{\varPi }}_{\text{e}}}{\boldsymbol{\varPi }}_{\text{e}}^{\text{H}}{\boldsymbol{\varPsi }}_{\text{e}}^{\text{H}}} \right){{\boldsymbol{R}}_{\text{a}}}} \right) \tag{10c}
    \begin{split} \,{{\tilde e}_2} = & \frac{1}{L}{\text{tr}}\left( {\left( {{\boldsymbol{\varXi }}_{\text{e}}^{ - 1} - {\boldsymbol{\varXi }}_{\text{e}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{e}}}{e_1}{{\boldsymbol{R}}_{\text{a}}}{\boldsymbol{\varTheta }}_{\text{e}}^{ - 1}{\boldsymbol{\bar H}}_{\text{e}}^{\text{H}}{\boldsymbol{\varXi }}_{\text{e}}^{ - 1}} \right){{\boldsymbol{R}}_{\text{e}}}} \right) \\ & - \frac{1}{L}{\text{tr}}\left( {\left( {{\boldsymbol{\varXi }}_{\text{e}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{e}}}{{\boldsymbol{\varPi }}_{\text{e}}}{\boldsymbol{\varPi }}_{\text{e}}^{\text{H}}{\boldsymbol{\bar H}}_{\text{e}}^{\text{H}}{\boldsymbol{\varXi }}_{\text{e}}^{ - 1}} \right){{\boldsymbol{R}}_{\text{e}}}} \right) \end{split} \tag{10d}

    此外,\{ {{\boldsymbol{F}}_i},{{\boldsymbol{\varTheta }}_i},{{\boldsymbol{\varXi }}_i},{{\boldsymbol{\varPsi }}_i},{{\boldsymbol{\varPi}} _i},{{\boldsymbol{\varGamma}} _i}\}可以表示为

    {{\boldsymbol{F}}_i} = {\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{\boldsymbol{\varGamma }}_i^{ - 1}{{\boldsymbol{\varPhi }}^{\text{H}}}\left( {{\boldsymbol{\bar H}}_i^{\text{H}}{\boldsymbol{\varXi }}_i^{ - 1}{{{\boldsymbol{\bar H}}}_i} + {{\tilde i}_2}{{\boldsymbol{T}}_i}} \right){\boldsymbol{\varPhi }}{{\boldsymbol{\bar H}}_{\text{a}}} + {\tilde i_1}{{\boldsymbol{T}}_{\text{a}}} \tag{11a}
    {{\boldsymbol{\varTheta }}_i} = {{\boldsymbol{I}}_L} + {i_1}{{\boldsymbol{\varPsi }}_i}{{\boldsymbol{R}}_{\text{a}}} \tag{11b}
    {{\boldsymbol{\varXi }}_b} = {\sigma ^2}{{\boldsymbol{I}}_N} + {b_2}{{\boldsymbol{R}}_{\text{b}}} \tag{11c}
    {{\boldsymbol{\varXi }}_{\text{e}}} = {\sigma ^2}{{\boldsymbol{I}}_E} + {e_2}{{\boldsymbol{R}}_{\text{e}}} \tag{11d}
    {{\boldsymbol{\varPsi }}_i} = {\boldsymbol{\bar H}}_i^{\text{H}}{\boldsymbol{\varXi }}_i^{ - 1}{{\boldsymbol{\bar H}}_i} + {\tilde i_2}{{\boldsymbol{T}}_i} \tag{11e}
    {{\boldsymbol{\varPi }}_i} = {\boldsymbol{\varTheta }}_i^{ - 1}{{\boldsymbol{\bar H}}_{\text{a}}}{\left( {{{\boldsymbol{I}}_M} + {\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{\boldsymbol{\varTheta }}_i^{ - 1}{{\boldsymbol{\varPsi }}_i}{{{\boldsymbol{\bar H}}}_{\text{a}}} + {{\tilde i}_1}{{\boldsymbol{T}}_{\text{a}}}} \right)^{ - \tfrac{1}{2}}} \tag{11f}
    {{\boldsymbol{\varGamma }}_i} = {{\boldsymbol{I}}_L} + {i_1}{{\boldsymbol{\varPhi }}^{\text{H}}}\left( {{\boldsymbol{\bar H}}_i^{\text{H}}{\boldsymbol{\varXi }}_i^{ - 1}{{{\boldsymbol{\bar H}}}_i} + {{\tilde i}_2}{{\boldsymbol{T}}_i}} \right){\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}} \tag{11g}

    其中,i \in \{ {\text{b}},{\text{e}}\} 。因此,问题式(7)可以转换为

    \begin{split} & \mathop {\max }\limits_{{\boldsymbol{Q}},{\boldsymbol{\varPhi }}} {\text{ }}{{\bar C}_{\text{s}}}, \\ & {\text{s}}.{\text{t}}.{\text{ tr}}\left( {\boldsymbol{Q}} \right) \le M{P_{\text{T}}},{\boldsymbol{Q}}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \succ } { {\textit{0}}}, \\ & \qquad{\text{E}}\left\{ {{\text{tr}}\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{{\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}} \right)}^{\text{H}}}} \right)} \right\} \le M{P_{\text{I}}}, \\ & \qquad{\boldsymbol{\varPhi }} = {\text{diag}}\left( {{{\left[ {{\theta _1},{\theta _2},\cdots,{\theta _L}} \right]}^{\text{T}}}} \right), \\ & \qquad{\theta _l} = {\text{e}}{}^{{\text{j}}{\vartheta _l}},{\vartheta _l} \in \left[ {0,2\pi } \right) \end{split} (12)

    上述优化问题是非凸的,仍然难以求解。接下来,提出一种AO算法,分别迭代设计{\boldsymbol{Q}}{\boldsymbol{\varPhi }}

    给定{\boldsymbol{\varPhi }},相应的优化{\boldsymbol{Q}}的子问题可以表示为

    \begin{split} & \mathop {\max }\limits_{\boldsymbol{Q}} {\text{ }}{{\bar C}_{\text{s}}}, \\ & \quad{\text{s}}.{\text{t}}.{\text{ tr}}\left( {\boldsymbol{Q}} \right) \le M{P_{\text{T}}},{\text{ }}{\boldsymbol{Q}}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \succ } { {\textit{0}}}, \\ & \quad\quad\;\; {\text{E}}\left\{ {{\text{tr}}\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{{\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}} \right)}^{\text{H}}}} \right)} \right\} \le M{P_{\text{I}}} \end{split} (13)

    其中,IPC不等式的左边具体表达式为

    \begin{split} & {\text{E}}\left\{ {{\text{tr}}\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{{\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}} \right)}^{\text{H}}}} \right)} \right\} \\ & \quad = {\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}} \right)\\ & \qquad +D{\text{tr}}\left( {{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}} \right) \\ & \qquad + {\text{tr}}\left( {{\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}} \right){\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}} \right) \\ & \qquad +D{\text{tr}}\left( {{\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}} \right){\text{tr}}\left( {{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}} \right) \end{split} (14)

    上述优化问题是非凸的,将在下面的定理中给出问题式(13)的解。

    定理1 对{{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{{\boldsymbol{F}}_{\text{b}}}{{\boldsymbol{K}}^{ - \tfrac{1}{2}}}进行奇异值分解{{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{{\boldsymbol{F}}_{\text{b}}} {{\boldsymbol{K}}^{ - \tfrac{1}{2}}} = {{\boldsymbol{V}}_K}{{\boldsymbol{\varLambda }}_K}{\boldsymbol{V}}_K^{\text{H}},得到问题式(13)的最优解

    {{\boldsymbol{Q}}^{{\rm{opt}}}} = {{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{{\boldsymbol{V}}_K}{{\boldsymbol{\varLambda }}^{{\rm{opt}}}}{\boldsymbol{V}}_K^{\text{H}}{{\boldsymbol{K}}^{ - \tfrac{1}{2}}} (15)

    其中

    \begin{split} {\boldsymbol{K}} = &\frac{1}{\nu }{{\boldsymbol{F}}_{\text{e}}}^{\tfrac{1}{2}}{\left( {{I_M} + {{\boldsymbol{F}}_{\text{e}}}^{\tfrac{1}{2}}{\boldsymbol{\tilde Q}}{{\boldsymbol{F}}_{\text{e}}}^{\tfrac{1}{2}}} \right)^{ - 1}}{{\boldsymbol{F}}_{\text{e}}}^{\tfrac{1}{2}} \\ &- \frac{\lambda }{\nu }\left( {{\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}{{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}} \right. + {{\boldsymbol{T}}_{\text{a}}}{\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}} \right) \\ &\left. { + D{\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}} + D{{\boldsymbol{T}}_{\text{a}}}{\text{tr}}\left( {{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}} \right)} \right) + {{\boldsymbol{I}}_M} \end{split} (16)

    特征值矩阵通过式(17)求得

    {{\boldsymbol{\varLambda }}^{{\rm{opt}}}} = {\left( {\frac{1}{\nu }{{\boldsymbol{I}}_M} - {\boldsymbol{\varLambda }}_K^{ - 1}} \right)^ + } (17)

    其中,\lambda \ge 0\nu \ge 0是满足约束的拉格朗日参数。

    证明 由文献[20]的泰勒级数近似表达式,目标函数中的{\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{b}}}{\boldsymbol{Q}}} \right)^{ - 1}}{{\boldsymbol{F}}_{\text{b}}} {\boldsymbol{\tilde Q}} 处进行泰勒展开

    \begin{split} {\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{b}}}{\boldsymbol{Q}}} \right)^{ - 1}}{{\boldsymbol{F}}_{\text{b}}} \approx& {\log _2}\det \left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{e}}}{\boldsymbol{\tilde Q}}} \right) \\ &+ {{\rm{tr}}} {\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{e}}}{\boldsymbol{\tilde Q}}} \right)^{ - 1}}{{\boldsymbol{F}}_{\text{e}}}\left( {{\boldsymbol{Q}} - {\boldsymbol{\tilde Q}}} \right) \end{split} (18)

    然后可以获得 {\bar C_{\text{s}}} 的泰勒近似展开表达式

    \begin{split} {{\bar C}_{\text{s}}} \approx &{{\tilde C}_{\text{s}}} \\ =& {{\tilde I}_{\text{s}}} + {\log _2}\det \left( {{{\boldsymbol{I}}_N} + \frac{{{b_2}}}{{{\sigma ^2}}}{{\boldsymbol{R}}_{\text{b}}}} \right) - {\log _2}\det \left( {{{\boldsymbol{I}}_E} + \frac{{{e_2}}}{{{\sigma ^2}}}{{\boldsymbol{R}}_{\text{e}}}} \right) \\ & + {\log _2}\det \left( {{{\boldsymbol{I}}_L} + {b_1}{{\boldsymbol{\varPhi }}^{\text{H}}}\left( {{\boldsymbol{\bar H}}_{\text{b}}^{\text{H}}{\boldsymbol{\varTheta }}_{\text{b}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{b}}} + {{\tilde b}_2}{{\boldsymbol{T}}_{\text{b}}}} \right){\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}} \right) \\ & - {\log _2}\det \left( {{{\boldsymbol{I}}_L} + {e_1}{{\boldsymbol{\varPhi}} ^{\text{H}}}\left( {{\boldsymbol{\bar H}}_{\text{e}}^{\text{H}}{\boldsymbol{\varTheta }}_{\text{e}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{e}}} + {{\tilde e}_2}{{\boldsymbol{T}}_{\text{e}}}} \right){\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\rm{a}}}} \right) \\ &- M{b_1}{{\tilde b}_1} - L{b_2}{{\tilde b}_2} + M{e_1}{{\tilde e}_1} + L{e_2}{{\tilde e}_2} \\[-13pt] \end{split} (19)

    其中

    \begin{split} {{\tilde I}_{\text{s}}} =& {\log _2}\det \left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{b}}}{\boldsymbol{Q}}} \right) - {\log _2}\det \left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{e}}}{\boldsymbol{\tilde Q}}} \right) \\ &- {\text{tr}}\left( {{{\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{e}}}{\boldsymbol{\tilde Q}}} \right)}^{ - 1}}{{\boldsymbol{F}}_{\text{e}}}\left( {{\boldsymbol{Q}} - {\boldsymbol{\tilde Q}}} \right)} \right) \\[-15pt] \end{split} (20)

    优化问题式(13)可以转换为

    \begin{split} & \mathop {\max }\limits_{\boldsymbol{Q}} {\text{ }}{{\tilde C}_{\text{s}}}, \\ & \quad{\text{s}}.{\text{t}}.{\text{ tr}}\left( {\boldsymbol{Q}} \right) \le M{P_{\text{T}}},{\text{ }}{\boldsymbol{Q}} \succeq { {\textit{0}}}, \\ & \qquad\quad {\text{E}}\left\{ {{\text{tr}}\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{{\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}} \right)}^{\text{H}}}} \right)} \right\} \le M{P_{\text{I}}} \end{split} (21)

    上述优化问题的拉格朗日对偶函数可以写为

    \begin{split} & \mathcal{L}\left( {{\boldsymbol{Q}},{\boldsymbol{\varPhi }},\lambda ,\nu } \right) \\ & \quad = {{\tilde C}_{\text{s}}}\left( {{\boldsymbol{Q}},{\boldsymbol{\varPhi }}} \right) - \lambda \left( {{\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}} \right)} \right. \\ & \qquad + {\text{tr}}\left( {{\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}} \right){\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}} \right) \\ & \qquad +D{\text{tr}}\left( {{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}} \right) \\ &\qquad \left. +D{\text{tr}}\left( {{\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}} \right){\text{tr}}\left( {{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}} \right) - M{P_{\text{I}}} \right){\text{ }} \\ & \qquad - \nu \left( {{\text{tr}}\left( {\boldsymbol{Q}} \right) - M{P_{\text{T}}}} \right) - {\text{tr}}\left( {{\boldsymbol{AQ}}} \right) \end{split} (22)

    其中,\lambda \ge 0,\nu \ge 0,{\boldsymbol{A}} \succeq { {\textit{0}}}都是拉格朗日参数。对式(22)关于求偏导,得到优化问题式(21)的库恩塔克(Karush–Kuhn–Tucker, KKT)条件式(23),代入式(16),则式(23)的第1个等式可以转换为

    \left.\begin{aligned} & -{\left({\boldsymbol I}_{M}+{{\boldsymbol{F}}}_{\text{b}}{\boldsymbol{Q}}\right)}^{-1}{{\boldsymbol{F}}}_{\text{b}}+{\left({\boldsymbol I}_{M}+{{\boldsymbol{F}}}_{\text{e}}{\tilde{\boldsymbol Q}}\right)}^{-1}{F}_{\text{e}}-\lambda ({\bar{{\boldsymbol{H}}}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }} }^{\text{H}}{\bar{{\boldsymbol{H}}}}_{\text{P}}^{\text{H}}{\bar{{\boldsymbol{H}}}}_{\text{P}}{\boldsymbol{\varPhi }} {\bar{{\boldsymbol{H}}}}_{\text{a}}\\ & \quad +{{\boldsymbol{T}}}_{\text{a}}\text{tr}\left({\bar{{\boldsymbol{H}}}}_{\text{P}}{\boldsymbol{\varPhi }} {\boldsymbol R}_{\text{a}}{{\boldsymbol{\varPhi }} }^{\text{H}}{\bar{{\boldsymbol{H}}}}_{\text{P}}^{\text{H}}\right)+D{\bar{{\boldsymbol{H}}}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }} }^{\text{H}}{{\boldsymbol{T}}}_{\text{P}}{\boldsymbol{\varPhi }} {\bar{{\boldsymbol{H}}}}_{\text{a}}+D{{\boldsymbol{T}}}_{\text{a}}\text{tr}\left({\boldsymbol{\varPhi }} {\boldsymbol R}_{\text{a}}{{\boldsymbol{\varPhi }} }^{\text{H}}{{\boldsymbol{T}}}_{\text{P}}\right))+\nu {\boldsymbol I}_{M}-{\boldsymbol{A}}=0\\ & \lambda (M{P}_{\text{I}}-{\text{tr}}\left({\bar{{\boldsymbol{H}}}}_{\text{P}}{\boldsymbol{\varPhi }} {\bar{{\boldsymbol{H}}}}_{\text{a}}{\boldsymbol{Q}}{\bar{{\boldsymbol{H}}}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }} }^{\text{H}}{\bar{{\boldsymbol{H}}}}_{\text{P}}^{\text{H}}\right)-{\text{tr}}\left(Q{{\boldsymbol{T}}}_{\text{a}}\right){\text{tr}}\left({\bar{{\boldsymbol{H}}}}_{\text{P}}{\boldsymbol{\varPhi }} {\boldsymbol R}_{\text{a}}{{\boldsymbol{\varPhi }} }^{\text{H}}{\bar{{\boldsymbol{H}}}}_{\text{P}}^{\text{H}}\right)\\ & \quad -D{\text{tr}}\left({\boldsymbol{\varPhi }} {\bar{{\boldsymbol{H}}}}_{\text{a}}{\boldsymbol{Q}}{\bar{{\boldsymbol{H}}}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }} }^{\text{H}}{{\boldsymbol{T}}}_{\text{P}}\right)-D\text{tr}\left({\boldsymbol{Q}}{{\boldsymbol{T}}}_{\text{a}}\right)\text{tr}\left({\boldsymbol{\varPhi }} {\boldsymbol R}_{\text{a}}{{\boldsymbol{\varPhi }} }^{\text{H}}{{\boldsymbol{T}}}_{\text{P}}\right))=0,\;\lambda \ge 0\\ & \nu \left(M{P}_{\text{T}}-\text{tr}\left({\boldsymbol{Q}}\right)\right)=0,\nu \ge 0,\text{tr(}{\boldsymbol{AQ}})=0,{\boldsymbol{A}}\succeq { {\textit{0}}} ,{\boldsymbol{Q}} \succeq { {\textit{0}}} \end{aligned}\right\} (23)
    \begin{split} & - {\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{{\boldsymbol{F}}_{\text{b}}}{{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{\boldsymbol{Q}}'} \right)^{ - 1}}{{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{{\boldsymbol{F}}_{\text{b}}}{{\boldsymbol{K}}^{ - \tfrac{1}{2}}} \\ & \quad+ \nu {{\boldsymbol{I}}_M} - {\boldsymbol{A}}' = 0 \end{split} (24)

    其中,{\boldsymbol{Q}}' = {{\boldsymbol{K}}^{\tfrac{1}{2}}}{\boldsymbol{Q}}{{\boldsymbol{K}}^{\tfrac{1}{2}}}, {\boldsymbol{A}}' = {{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{{\boldsymbol{F}}_{\text{b}}}{{\boldsymbol{K}}^{ - \tfrac{1}{2}}}。则问题式(21)可以转换为

    \begin{split} & \underset{{\boldsymbol{Q}}{'}}{\mathrm{max}}{\text{ log}}_{2}\text{det}\left({{\boldsymbol{I}}}_{M}+{{\boldsymbol{K}}}^{-{ \tfrac{1}{2}}}{{\boldsymbol{F}}}_{\text{b}}{{\boldsymbol{K}}}^{-{ \tfrac{1}{2}}}{\boldsymbol{Q}}{'}\right),\\ & \text{s}.\text{t}.\text{ tr}\left({{\boldsymbol{K}}}^{-{ \tfrac{1}{2}}}{\boldsymbol{Q}}{'}{{\boldsymbol{K}}}^{-{\tfrac{1}{2}}}\right)\le M{P}_{\text{T}},{\boldsymbol{Q}}{'}\succeq { {\textit{0}}} \end{split} (25)

    上述优化问题可以通过注水算法求解[19,21]。对{\boldsymbol{A}}'进行特征值分解{{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{{\boldsymbol{F}}_{\text{b}}}{{\boldsymbol{K}}^{ - \tfrac{1}{2}}} = {{\boldsymbol{V}}_K}{{\boldsymbol{\varLambda }}_K}{\boldsymbol{V}}_K^{\text{H}},得到最优发送协方差矩阵{\boldsymbol{Q}} = {{\boldsymbol{K}}^{ - \tfrac{1}{2}}}{{\boldsymbol{V}}_K}{\boldsymbol{\varLambda V}}_K^{\text{H}}{{\boldsymbol{K}}^{ - \tfrac{1}{2}}},其中{\boldsymbol{\varLambda }} = {(1/\nu {{\boldsymbol{I}}_M} - {\boldsymbol{\varLambda }}_K^{ - 1})^ + }证毕

    给定{\boldsymbol{Q}},相应的优化 {\boldsymbol{\varPhi }} 的子问题可以表示为如式(26)

    \begin{split} & \mathop {\max }\limits_{{\boldsymbol{Q}},{\boldsymbol{\Phi }}} {\text{ }}{{\bar C}_{\text{s}}}, \\ &{\text{s}}.{\text{t}}.{\text{ E}}\left\{ {{\text{tr}}\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{{\left( {{{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}} \right)}^{\text{H}}}} \right)} \right\} \le M{P_{\text{I}}}, \\ & \qquad{\boldsymbol{\varPhi }} = {\text{diag}}\left( {{{\left[ {{\theta _1},{\theta _2},\cdots,{\theta _L}} \right]}^{\text{T}}}} \right), \\ & \qquad {\theta _l} = {\text{e}}{}^{{\text{j}}{\vartheta _l}},{\vartheta _l} \in \left[ {0,2\pi } \right) \end{split} (26)

    优化问题式(26)的拉格朗日对偶函数可以写为

    \begin{split} \mathcal{L}\left( {{\boldsymbol{\varPhi }},\mu } \right) =\, &{{\bar C}_{\text{s}}}\left( {\boldsymbol{\varPhi }} \right) - \mu ({\text{tr}}({{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}) \\ & + {\text{tr}}({\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}){\text{tr}}({{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}) \\ &+ D{\text{tr}}({\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}) \\ & +D{\text{tr}}({\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}){\text{tr}}({\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}) - M{P_{\text{I}}}) \end{split} (27)
    \begin{split} \frac{{\partial \mathcal{L}\left( {{\boldsymbol{\varPhi }},\mu } \right)}}{{\partial {\theta _l}}} =& {b_1}{\text{tr(}}{\boldsymbol{\varGamma }}_{\text{b}}^{ - 1}{{\boldsymbol{\varUpsilon}} _{\text{b}}}{{\boldsymbol{R}}_{\text{a}}}) + {\text{tr}}\left( {{\boldsymbol{Q}}{{\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{b}}}{\boldsymbol{Q}}} \right)}^{ - 1}}} \right.\left. {\left( { - {b_1}{\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{\boldsymbol{\varGamma }}_{\text{b}}^{ - 1}{{\boldsymbol{\varUpsilon}} _{\text{b}}}{{\boldsymbol{R}}_{\text{a}}}{\boldsymbol{\varGamma }}_{\text{b}}^{ - 1}{{\boldsymbol{\varPhi }}^{\text{H}}}\left( {{\boldsymbol{\bar H}}_{\text{b}}^{\text{H}}{\boldsymbol{\varXi }}_{\text{b}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{b}}} + {{\tilde b}_2}{{\boldsymbol{T}}_{\text{b}}}} \right){\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}} \right)} \right) \\ & + {\text{tr}}\left( {{\boldsymbol{Q}}{{\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{b}}}{\boldsymbol{Q}}} \right)}^{ - 1}}{\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{\boldsymbol{\varGamma }}_{\text{b}}^{ - 1}{{\boldsymbol{\varUpsilon}} _{\text{b}}}{{{\boldsymbol{\bar H}}}_{\text{a}}}} \right) - {\text{tr}}\left( {{\boldsymbol{Q}}{{\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{e}}}{\boldsymbol{Q}}} \right)}^{ - 1}}{\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{\boldsymbol{\varGamma }}_{\text{e}}^{ - 1}{{\boldsymbol{\varUpsilon}} _{\text{e}}}{{{\boldsymbol{\bar H}}}_{\text{a}}}} \right) \\ & - {e_1}{\text{tr}}\left( {{\boldsymbol{\varGamma }}_{\text{e}}^{ - 1}{{\boldsymbol{\varUpsilon}} _{\text{e}}}{{\boldsymbol{R}}_{\text{a}}}} \right) - {\text{tr}}\left( {{\boldsymbol{Q}}{{\left( {{{\boldsymbol{I}}_M} + {{\boldsymbol{F}}_{\text{e}}}{\boldsymbol{Q}}} \right)}^{ - 1}}} \right.\left. {\left( { - {e_1}{\boldsymbol{\bar H}}_{\text{a}}^{\text{H}}{\boldsymbol{\varGamma }}_{\text{e}}^{ - 1}{{\boldsymbol{\varUpsilon}} _{\text{e}}}{{\boldsymbol{R}}_{\text{a}}}{\boldsymbol{\varGamma }}_{\text{e}}^{ - 1}{{\boldsymbol{\varPhi }}^{\text{H}}}\left( {{\boldsymbol{\bar H}}_{\text{e}}^{\text{H}}{\boldsymbol{\varXi }}_{\text{e}}^{ - 1}{{{\boldsymbol{\bar H}}}_{\text{e}}} + {{\tilde e}_2}{{\boldsymbol{T}}_{\text{e}}}} \right){\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}} \right)} \right) \\ & - \mu \left( {{\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}{{{\boldsymbol{\bar H}}}_{\text{P}}}{{\boldsymbol{E}}_{ll}} - \theta _l^{ - 2}{{\boldsymbol{E}}_{ll}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}{{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}} \right)} \right. \\ & + {\text{tr}}\left( {{\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}} \right){\text{tr}}\left( {{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}{{{\boldsymbol{\bar H}}}_{\text{P}}}{{\boldsymbol{E}}_{ll}} - \theta _l^{ - 2}{{\boldsymbol{E}}_{ll}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}{{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}} \right) \\ & + D{\text{tr}}\left( {{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}{{\boldsymbol{E}}_{ll}} - \theta _l^{ - 2}{{\boldsymbol{E}}_{ll}}{{\boldsymbol{T}}_{\text{P}}}{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}} \right)\left. { + D{\text{tr}}\left( {{\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}} \right){\text{tr}}\left( {{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}{{\boldsymbol{E}}_{ll}} - \theta _l^{ - 2}{{\boldsymbol{E}}_{ll}}{{\boldsymbol{T}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}} \right)} \right) \\ = &0 \\[-10pt] \end{split} (28)

    其中,\mu \ge 0是干扰功率约束相应的拉格朗日参数。通过求解KKT条件式(28),得到新的相移矢量 {{\boldsymbol{\theta }}^{\left( {n + 1} \right)}} 。对于i \in \{ {\text{b}},{\text{e}}\} {{\boldsymbol{\varUpsilon}} _i}可由下述表达式获得

    \begin{split} {{\boldsymbol{\varUpsilon}} _i} =& {{\boldsymbol{\varPhi }}^{\text{H}}}\left( {{\boldsymbol{\bar H}}_i^{\text{H}}{\boldsymbol{\varXi }}_i^{ - 1}{{{\boldsymbol{\bar H}}}_i} + {{\tilde i}_2}{{\boldsymbol{T}}_i}} \right){{\boldsymbol{E}}_{ll}} \\ & - \theta _i^{ - 2}{{\boldsymbol{E}}_{ll}}\left( {{\boldsymbol{\bar H}}_i^{\text{H}}{\boldsymbol{\varXi }}_i^{ - 1}{{{\boldsymbol{\bar H}}}_i} + {{\tilde i}_2}{{\boldsymbol{T}}_i}} \right){\boldsymbol{\varPhi }} \end{split} (29)

    {{\boldsymbol{E}}_{ll}}是第l行、第l列的元素为1,其余全为0的L \times L维矩阵。\mu 可以通过投影梯度法进行迭代

    \begin{split} \mu \left( {n + 1} \right) =& [\mu \left( n \right) - \varDelta ({\text{tr}}({{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}) \\ & + {\text{tr}}({\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}){\text{tr}}({{{\boldsymbol{\bar H}}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{\boldsymbol{\bar H}}_{\text{P}}^{\text{H}}) \\ &+ D{\text{tr}}({\boldsymbol{\varPhi }}{{{\boldsymbol{\bar H}}}_{\text{a}}}{\boldsymbol{Q\bar H}}_{\text{a}}^{\text{H}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}) \\ &{\text{+ }}D{\text{tr}}({\boldsymbol{Q}}{{\boldsymbol{T}}_{\text{a}}}){\text{tr}}({\boldsymbol{\varPhi }}{{\boldsymbol{R}}_{\text{a}}}{{\boldsymbol{\varPhi }}^{\text{H}}}{{\boldsymbol{T}}_{\text{P}}}) - M{P_{\text{I}}}){]^ + } \end{split} (30)

    其中,\varDelta是迭代步长。可以得到相应的相移矩阵为

    {{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}} = {\rm{diag}}\left( {{{\boldsymbol{\theta }}^{\left( {t + 1} \right)}}} \right) (31)

    完整的AO算法如算法1所示。

    算法1 AO算法
     初始化:
      {{\boldsymbol{Q}}^{\left( 0 \right)}} = {{\boldsymbol{I}}_M} , {{\boldsymbol{\varPhi }}^{\left( 0 \right)}} = {{\boldsymbol{\varPhi }}^0} , b_i^{\left( 0 \right)}{\text{ = }}\tilde b_i^{\left( 0 \right)} = e_i^{\left( 0 \right)} = \tilde e_i^{\left( 0 \right)} = 1\;\left( {i = 1,2} \right) ,
      {\bar C_{\text{s}}}^{\left( 1 \right)} = 0 , \varepsilon = {10^{{{ - 4}}}}
     (1) 循环
     (2) 过程1:给定 {\boldsymbol{\varPhi }} ,注水算法求解最优解 {{\boldsymbol{Q}}^{{\text{opt}}}}
     (3) 根据式(11a)和式(16),计算 {{\boldsymbol{F}}_{\text{u}}}^{\left( {t + 1} \right)} , {{\boldsymbol{F}}_{\text{e}}}^{\left( {t + 1} \right)} {{\boldsymbol{K}}^{\left( {t + 1} \right)}}
     (4) 根据式(15)计算 {{\boldsymbol{Q}}^{\left( {t + 1} \right)}} ,并且根据干扰功率约束
        {\text{E}}\{ {\text{tr}}({{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{({{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}})^{\text{H}}})\} \le M{P_{\text{I}}} 和发送功率约束
        {\text{ tr(}}{\boldsymbol{Q}}) \le M{P_{\text{T}}} 确定合适的 {\lambda ^{\left( {t + 1} \right)}} , {\nu ^{\left( {t + 1} \right)}}
     (5) 根据式(9)、式(10)计算b_i^{\left( {t + 1} \right)},\tilde b_i^{\left( {t + 1} \right)},e_i^{\left( {t + 1} \right)},\tilde e_i^{\left( {t + 1} \right)}
       \left( {i = 1,2} \right),更新 {{\boldsymbol{\tilde Q}}^{\left( {t + 1} \right)}} = {{\boldsymbol{Q}}^{\left( {t + 1} \right)}}
     (6) 根据式(8)计算 {\bar C_{\text{s}}}\left( {{{\boldsymbol{Q}}^{\left( {t + 1} \right)}},{\boldsymbol{\varPhi }}} \right)
     (7) 更新 t: = t + 1 ,直到 \left| {{{\bar C}_{\text{s}}}({{\boldsymbol{Q}}^{\left( {t + 1} \right)}},{\boldsymbol{\varPhi }}) - {{\bar C}_{\text{s}}}({{\boldsymbol{Q}}^{\left( t \right)}},{\boldsymbol{\varPhi }})} \right| \le \varepsilon
     (8) 获得 {{\boldsymbol{Q}}^{{\text{opt}}}} = {{\boldsymbol{Q}}^{\left( {t + 1} \right)}}
     (9) 过程2:给定 {\boldsymbol{Q}} ,投影梯度上升法求解最优解 {{\boldsymbol{\varPhi }}^{{\text{opt}}}}
     (10) 根据式(30)更新 {\mu ^{\left( {t + 1} \right)}}
     (11) 基于给定 {{\boldsymbol{\varPhi }}^{\left( t \right)}} ,根据式(9)、式(10)计算
        b_i^{\left( {t + 1} \right)},\tilde b_i^{\left( {t + 1} \right)},e_i^{\left( {t + 1} \right)},\tilde e_i^{\left( {t + 1} \right)} \left( {i = 1,2} \right)
     (12) 根据式(28)计算 {{\boldsymbol{\theta }}^{\left( {n + 1} \right)}} ,{ {\boldsymbol{\varPhi } }^{\left( {t + 1} \right)} } = {\rm{diag}}({ {\boldsymbol{\theta } }^{\left( {t + 1} \right)} })
     (13) 根据式(8)计算 {\bar C_{\text{s}}}\left( {{\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}}} \right)
     (14) 更新 t: = t + 1 ,直到 \left| {{{\bar C}_{\text{s}}}{\text{(}}{\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}}{\text{)}} - {{\bar C}_{\text{s}}}({\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( t \right)}})} \right| \le \varepsilon
     (15) 获得 {{\boldsymbol{\varPhi }}^{{\text{opt}}}} = {{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}}
     (16) 直到 \left| {{{\bar C}_{\text{s}}}\left( {{{\boldsymbol{Q}}^{{\text{opt}}}},{{\boldsymbol{\varPhi }}^{{\text{opt}}}}} \right) - {{\bar C}_{\text{s}}}\left( {{{\boldsymbol{Q}}^{\left( t \right)}},{{\boldsymbol{\varPhi }}^{\left( t \right)}}} \right)} \right| \le \varepsilon ,结束循环。
    下载: 导出CSV 
    | 显示表格

    本节将通过仿真结果来验证第3节提出算法的有效性。信道增益设置为{\alpha _{\text{a}}} = {\alpha _{\text{P}}} = {\alpha _{\text{b}}} = 1, {\alpha _{\text{e}}} = 0.6,莱斯因子{\kappa _w} = 1 \left( {w = {\text{a}},{\text{P}},{\text{b}},{\text{e}}} \right) 。信道LoS分量根据文献[22]设置为全1矩阵,即 {[{\boldsymbol{\bar H}}]_{\forall m,n}} = 1 ,空间相关矩阵 {{\boldsymbol{R}}_w} {{\boldsymbol{T}}_w} 根据参考文献[23]生成,具体表示形式为

    {\left[{{\boldsymbol{R}}}_{w}或{{\boldsymbol{T}}}_{w}\right]}_{m,n}={\displaystyle\int\limits_{-180^\circ}^{180^\circ}\frac{{\rm{d}}\phi }{\sqrt{2\pi{\delta }^{2}}}{\text{e}}^{2{\pi{\rm{j}}}{d}_{\text{s}}\left(m-n\right)\mathrm{sin}\left(\frac{\pi\phi }{180}\right)-\frac{{\left(\phi -\eta \right)}^{2}}{2{\delta }^{2}}}} (32)

    其中,{d_{\text{s}}}, \delta , \varphi \eta 分别表示相对天线间距、均方根角度扩展、阵列平面中的物理角度和平均角度,m,n表示天线序列号。其中,{d_{\text{s}}} = 1, {\alpha _{\text{a}}},{\alpha _{\text{P}}},{\alpha _{\text{b}}} = 1 , {\alpha _{\text{e}}} = 0.6 , \eta _{\text{a}}^{\text{R}},\eta _{\text{P}}^{\text{R}},\eta _{\text{b}}^{\text{R}} = - 5^\circ , \eta _{\text{a}}^{\text{T}},\eta _{\text{P}}^{\text{T}},\eta _{\text{b}}^{\text{T}} = 0^\circ , \eta _{\text{e}}^{\text{R}} = 5^\circ , \eta _{\text{e}}^{\text{T}} = 10^\circ , \delta _{\text{a}}^{\text{R}},\delta _{\text{a}}^{\text{T}},\delta _{\text{P}}^{\text{R}},\delta _{\text{P}}^{\text{T}},\delta _{\text{b}}^{\text{R}},\delta _{\text{b}}^{\text{T}} = 30^\circ , \delta _{\text{e}}^{\text{R}},\delta _{\text{e}}^{\text{T}} = 10^\circ

    图2显示了不同系统配置下,模拟速率和遍历安全速率的确定性等价表达式的结果。设置ST天线数和RIS反射单元数为 M = L = 16 ,PU和窃听者处的天线数为 D = E = 12 ,总发射功率为{P_{\text{T}}} = 25 dBm,PU最大干扰功率阈值为{P_{\text{I}}} = 15 dBm。考虑SU比窃听者具有更多的天线和SU比窃听者具有更少的天线。可以发现,遍历安全速率与SNR呈正相关,分析结果(实心曲线)与10 000次蒙特卡罗平均法获得的模拟结果(标记)完全一致,且联合优化 {\boldsymbol{Q}} {\boldsymbol{\varPhi }},系统的保密性能会得到显著提升。另外,本文还比较了统计CSI方案和无CSI方案,其中,统计CSI方案表示统计CSI可以在PU, SU和窃听者处获得;在没有CSI方案情况下,本文初始设置{{\boldsymbol{Q}}^{(0)}} = {\boldsymbol{I}},且{{\boldsymbol{\varPhi }}^{(0)}}的对角元素在 [0,2\pi ) 中服从均匀独立分布随机生成。很显然,没有CSI方案更易于实现,但是没有CSI方案的性能远不如所提出的方案。

    图 2  遍历安全速率及其解析解与SNR的关系

    图3展示了系统遍历安全速率的确定性等价表达式结果与迭代次数的关系。设置ST天线数、SU天线数、窃听者天线数和RIS反射单元数为M = N = E = L = 16。总发射功率设置为{P_{\text{T}}} = 25 dBm, PU最大干扰功率阈值为{P_{\text{I}}} = 15 dBm。可以看出,随着迭代次数的增加,系统的遍历安全速率单调增加直至保持稳定状态,即该算法在18次迭代后达到收敛,证实了该算法的收敛性。

    图 3  所提AO算法的收敛性

    图4比较了遍历安全速率与窃听者天线数的关系。设置ST天线数、RIS反射单元数为M = L = 16,PU和SU的天线数为 N = D = 12 ,总发射功率设置为{P_{\text{T}}} = 25 dBm,PU最大干扰功率阈值为{P_{\text{I}}} = 15 dBm。在无线安全通信的场景中,窃听者的存在会降低通信质量,而随着窃听者天线数的不断增加,遍历安全速率也会不断降低。当窃听者的天线数由2增加至12时,在未优化{\boldsymbol{Q}}{\boldsymbol{\varPhi }}的情况下,遍历安全速率将随着窃听者天线数的增加不断降低甚至趋于零,此时SU的通信质量极差。然而,本文提出的算法可以改善这种情况,在较差的通信环境下,也能保证SU进行有效的安全通信,这也表明了本算法的优越性。

    图 4  遍历安全速率及其理论分析值与窃听者天线数量的关系

    图5展示了在不同发射功率,设置ST天线数 M = 16 ,PU, SU和窃听者的天线数为N = D = E = 8,PU最大干扰功率阈值为{P_{\text{I}}} = 15 dBm的情况下,遍历安全速率与RIS反射单元数 L 的关系。从图中可以观察到,随着RIS反射单元数的增加,遍历安全速率也增加,这是由于阵列增益对系统性能的影响。但是,随着 L 的增加,遍历安全速率的增速逐渐减缓。这表明,在实际的RIS部署中,当RIS的反射单元数量增加到一定程度时,再继续增加相同的反射单元数量时,系统的性能增益会减小,这为最优反射单元数的设置提供了参考。同时,对比 L = 10 L = 60 时不同发送功率下的遍历安全速率,可以发现,增加发送功率也能增加遍历安全速率,且在RIS反射单元数较大时,功率增加所带来的速率增益更大。

    图 5  遍历安全速率及其解析解与RIS反射单元数的关系

    图6显示了在不同均方根角度扩展下,系统遍历安全速率与SNR的关系。设置ST天线数、RIS反射单元数 M = L = 16 ,PU, SU和窃听者的天线数为 N = D = E = 12 ,PU最大干扰功率阈值为{P_{\text{I}}} = 15\; {\rm{dBm}}。由于空间相关性会随着均方根角度扩展的减小而增大,因此从中可以看出,系统遍历安全速率随着空间相关性的增加而降低,这是因为天线间的空间相关性降低了信道容量和分集增益。

    图 6  遍历安全速率与SNR关于均方根角度扩展的关系

    本文研究了基于统计CSI的RIS辅助频谱共享CR MIMO无线安全传输方法。首先,利用统计CSI,推导出系统遍历安全速率的确定性等价表达式;然后,在满足总功率约束和干扰功率约束条件下,通过最大化系统遍历安全速率,采用泰勒级数展开法和拉格朗日乘子法设计了发送协方差矩阵和相移矩阵。仿真结果验证了所推导的确定性等价表达式的准确性,也验证了所提算法的有效性。

  • 图  1  RIS辅助频谱共享CR MIMO无线通信系统

    图  2  遍历安全速率及其解析解与SNR的关系

    图  3  所提AO算法的收敛性

    图  4  遍历安全速率及其理论分析值与窃听者天线数量的关系

    图  5  遍历安全速率及其解析解与RIS反射单元数的关系

    图  6  遍历安全速率与SNR关于均方根角度扩展的关系

    算法1 AO算法
     初始化:
      {{\boldsymbol{Q}}^{\left( 0 \right)}} = {{\boldsymbol{I}}_M} , {{\boldsymbol{\varPhi }}^{\left( 0 \right)}} = {{\boldsymbol{\varPhi }}^0} , b_i^{\left( 0 \right)}{\text{ = }}\tilde b_i^{\left( 0 \right)} = e_i^{\left( 0 \right)} = \tilde e_i^{\left( 0 \right)} = 1\;\left( {i = 1,2} \right) ,
      {\bar C_{\text{s}}}^{\left( 1 \right)} = 0 , \varepsilon = {10^{{{ - 4}}}}
     (1) 循环
     (2) 过程1:给定 {\boldsymbol{\varPhi }} ,注水算法求解最优解 {{\boldsymbol{Q}}^{{\text{opt}}}}
     (3) 根据式(11a)和式(16),计算 {{\boldsymbol{F}}_{\text{u}}}^{\left( {t + 1} \right)} , {{\boldsymbol{F}}_{\text{e}}}^{\left( {t + 1} \right)} {{\boldsymbol{K}}^{\left( {t + 1} \right)}}
     (4) 根据式(15)计算 {{\boldsymbol{Q}}^{\left( {t + 1} \right)}} ,并且根据干扰功率约束
        {\text{E}}\{ {\text{tr}}({{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{({{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}})^{\text{H}}})\} \le M{P_{\text{I}}} 和发送功率约束
        {\text{ tr(}}{\boldsymbol{Q}}) \le M{P_{\text{T}}} 确定合适的 {\lambda ^{\left( {t + 1} \right)}} , {\nu ^{\left( {t + 1} \right)}}
     (5) 根据式(9)、式(10)计算b_i^{\left( {t + 1} \right)},\tilde b_i^{\left( {t + 1} \right)},e_i^{\left( {t + 1} \right)},\tilde e_i^{\left( {t + 1} \right)}
       \left( {i = 1,2} \right),更新 {{\boldsymbol{\tilde Q}}^{\left( {t + 1} \right)}} = {{\boldsymbol{Q}}^{\left( {t + 1} \right)}}
     (6) 根据式(8)计算 {\bar C_{\text{s}}}\left( {{{\boldsymbol{Q}}^{\left( {t + 1} \right)}},{\boldsymbol{\varPhi }}} \right)
     (7) 更新 t: = t + 1 ,直到 \left| {{{\bar C}_{\text{s}}}({{\boldsymbol{Q}}^{\left( {t + 1} \right)}},{\boldsymbol{\varPhi }}) - {{\bar C}_{\text{s}}}({{\boldsymbol{Q}}^{\left( t \right)}},{\boldsymbol{\varPhi }})} \right| \le \varepsilon
     (8) 获得 {{\boldsymbol{Q}}^{{\text{opt}}}} = {{\boldsymbol{Q}}^{\left( {t + 1} \right)}}
     (9) 过程2:给定 {\boldsymbol{Q}} ,投影梯度上升法求解最优解 {{\boldsymbol{\varPhi }}^{{\text{opt}}}}
     (10) 根据式(30)更新 {\mu ^{\left( {t + 1} \right)}}
     (11) 基于给定 {{\boldsymbol{\varPhi }}^{\left( t \right)}} ,根据式(9)、式(10)计算
        b_i^{\left( {t + 1} \right)},\tilde b_i^{\left( {t + 1} \right)},e_i^{\left( {t + 1} \right)},\tilde e_i^{\left( {t + 1} \right)} \left( {i = 1,2} \right)
     (12) 根据式(28)计算 {{\boldsymbol{\theta }}^{\left( {n + 1} \right)}} ,{ {\boldsymbol{\varPhi } }^{\left( {t + 1} \right)} } = {\rm{diag}}({ {\boldsymbol{\theta } }^{\left( {t + 1} \right)} })
     (13) 根据式(8)计算 {\bar C_{\text{s}}}\left( {{\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}}} \right)
     (14) 更新 t: = t + 1 ,直到 \left| {{{\bar C}_{\text{s}}}{\text{(}}{\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}}{\text{)}} - {{\bar C}_{\text{s}}}({\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( t \right)}})} \right| \le \varepsilon
     (15) 获得 {{\boldsymbol{\varPhi }}^{{\text{opt}}}} = {{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}}
     (16) 直到 \left| {{{\bar C}_{\text{s}}}\left( {{{\boldsymbol{Q}}^{{\text{opt}}}},{{\boldsymbol{\varPhi }}^{{\text{opt}}}}} \right) - {{\bar C}_{\text{s}}}\left( {{{\boldsymbol{Q}}^{\left( t \right)}},{{\boldsymbol{\varPhi }}^{\left( t \right)}}} \right)} \right| \le \varepsilon ,结束循环。
    下载: 导出CSV
  • [1] HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [2] LUO Caihong, LI Xiao, JIN Shi, et al. Reconfigurable intelligent surface-assisted multi-cell MISO communication systems exploiting statistical CSI[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2313–2317. doi: 10.1109/LWC.2021.3100427
    [3] 王丹, 陈小梦, 王勇芳. 可重构智能表面辅助无线通信的用户分配[J]. 电子与信息学报, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473

    WANG Dan, CHEN Xiaomeng, and WANG Yongfang. User assignment for wireless communication assisted by reconfigurable intelligent surfaces[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473
    [4] BEREYHI A, ASAAD S, MÜLLER R R, et al. Secure transmission in IRS-assisted MIMO systems with active eavesdroppers[C]. 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2020: 718–725.
    [5] BLOCH M and BARROS J. Physical-Layer Security: From Information Theory to Security Engineering[M]. New York: Cambridge University Press, 2011: 32–40.
    [6] YANG Xi, WEN Chaokai, and JIN Shi. MIMO detection for reconfigurable intelligent surface-assisted millimeter wave systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1777–1792. doi: 10.1109/JSAC.2020.3000822
    [7] CHU Zheng, HAO Wanming, XIAO Pei, et al. Intelligent reflecting surface aided multi-antenna secure transmission[J]. IEEE Wireless Communications Letters, 2020, 9(1): 108–112. doi: 10.1109/LWC.2019.2943559
    [8] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [9] FENG Keming, LI Xiao, HAN Yu, et al. Physical layer security enhancement exploiting intelligent reflecting surface[J]. IEEE Communications Letters, 2021, 25(3): 734–738. doi: 10.1109/LCOMM.2020.3042344
    [10] UL HASSAN M, REHMANI M H, REHAN M, et al. Differential privacy in cognitive radio networks: A comprehensive survey[J]. Cognitive Computation, 2022, 14(2): 475–510. doi: 10.1007/s12559-021-09969-9
    [11] LIANG Yingchang, CHEN K C, LI G Y, et al. Cognitive radio networking and communications: An overview[J]. IEEE Transactions on Vehicular Technology, 2011, 60(7): 3386–3407. doi: 10.1109/TVT.2011.2158673
    [12] YUAN Jie, LIANG Yingchang, JOUNG J, et al. Intelligent reflecting surface-assisted cognitive radio system[J]. IEEE Transactions on Communications, 2021, 69(1): 675–687. doi: 10.1109/TCOMM.2020.3033006
    [13] XU Dongfang, YU Xianghao, SUN Yan, et al. Resource allocation for IRS-assisted full-duplex cognitive radio systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7376–7394. doi: 10.1109/TCOMM.2020.3020838
    [14] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Joint power control and passive beamforming in IRS-assisted spectrum sharing[J]. IEEE Communications Letters, 2020, 24(7): 1553–1557. doi: 10.1109/LCOMM.2020.2979709
    [15] MAKARFI A U, KHAREL R, RABIE K M, et al. Reconfigurable intelligent surfaces based cognitive radio networks[C]. 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China, 2021: 1–6.
    [16] PEI Yiyang, LIANG Yingchang, ZHANG Lan, et al. Secure communication over MISO cognitive radio channels[J]. IEEE Transactions on Wireless Communications, 2010, 9(4): 1494–1502. doi: 10.1109/TWC.2010.04.090746
    [17] WU Xuewen, MA Jingxiao, GU Chenwei, et al. Robust secure transmission design for IRS-assisted mmWave cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8441–8456. doi: 10.1109/TVT.2022.3172293
    [18] DONG Limeng, WANG Huiming, and XIAO Haitao. Secure cognitive radio communication via intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(7): 4678–4690. doi: 10.1109/TCOMM.2021.3073028
    [19] ZHANG Jun, LIU Jie, MA Shaodan, et al. Large system achievable rate analysis of RIS-assisted MIMO wireless communication with statistical CSIT[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5572–5585. doi: 10.1109/TWC.2021.3068494
    [20] ZHANG Jun, YUEN C, WEN Chaokai, et al. Large system secrecy rate analysis for SWIPT MIMO wiretap channels[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(1): 74–85. doi: 10.1109/TIFS.2015.2477050
    [21] TARICCO G. Asymptotic mutual information statistics of separately correlated Rician fading MIMO channels[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3490–3504. doi: 10.1109/TIT.2008.926415
    [22] WEN Chaokai, CHEN J C, and TING Pangan. Robust transmitter design for amplify-and-forward MIMO relay systems exploiting only channel statistics[J]. IEEE Transactions on Wireless Communications, 2012, 11(2): 668–682. doi: 10.1109/TWC.2011.121911.110193
    [23] MOUSTAKAS A L, SIMON S H, and SENGUPTA A M. MIMO capacity through correlated channels in the presence of correlated interferers and noise: A (not so) large N analysis[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2545–2561. doi: 10.1109/TIT.2003.817427
  • 期刊类型引用(1)

    1. 罗春兰,林文,祝晓霞. (47, 24, 11)QR码的快速代数译码算法. 三明学院学报. 2022(06): 60-66+78 . 百度学术

    其他类型引用(1)

  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  510
  • HTML全文浏览量:  734
  • PDF下载量:  128
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-10-11
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2023-05-10

目录

/

返回文章
返回