高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能反射面辅助认知无线电多天线安全传输方法

张军 许文婉 黄小钧

张军, 许文婉, 黄小钧. 可重构智能反射面辅助认知无线电多天线安全传输方法[J]. 电子与信息学报, 2023, 45(5): 1706-1713. doi: 10.11999/JEIT220466
引用本文: 张军, 许文婉, 黄小钧. 可重构智能反射面辅助认知无线电多天线安全传输方法[J]. 电子与信息学报, 2023, 45(5): 1706-1713. doi: 10.11999/JEIT220466
ZHANG Jun, XU Wenwan, HUANG Xiaojun. Cognitive Radio Multiple-Input Multiple-Output Wireless Secure Transmission with Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1706-1713. doi: 10.11999/JEIT220466
Citation: ZHANG Jun, XU Wenwan, HUANG Xiaojun. Cognitive Radio Multiple-Input Multiple-Output Wireless Secure Transmission with Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1706-1713. doi: 10.11999/JEIT220466

可重构智能反射面辅助认知无线电多天线安全传输方法

doi: 10.11999/JEIT220466
基金项目: 国家自然科学基金(62071247)
详细信息
    作者简介:

    张军:男,博士,博士生导师,教授,研究方向为下一代移动通信理论与关键技术、大规模MIMO、无人机通信、人工智能通信、毫米波通信、RIS辅助通信、物理层安全等

    许文婉:女,硕士生,研究方向为可重构智能反射面、认知无线电、大规模MIMO系统、物理层安全

    黄小钧:女,硕士生,研究方向为可重构智能反射面、物理层安全

    通讯作者:

    张军 zhangjun@njupt.edu.cn

  • 中图分类号: TN92

Cognitive Radio Multiple-Input Multiple-Output Wireless Secure Transmission with Reconfigurable Intelligent Surface

Funds: The National Natural Science Foundation of China (62071247)
  • 摘要: 考虑一个可重构智能反射面(RIS)辅助的频谱共享认知无线电(CR)多输入多输出(MIMO)安全通信系统。在存在窃听者的情况下,配备有多根天线的次级发送机与次级用户进行通信。首先,利用统计信道状态信息,得到了系统遍历安全速率的确定性等价表达式。然后,在满足总发送功率约束和干扰功率约束的条件下,提出一种结合泰勒级数展开法和拉格朗日乘子法的交替优化算法,联合优化了发送协方差矩阵和RIS相移矩阵。最后,仿真结果验证了所提算法的有效性。
  • 图  1  RIS辅助频谱共享CR MIMO无线通信系统

    图  2  遍历安全速率及其解析解与SNR的关系

    图  3  所提AO算法的收敛性

    图  4  遍历安全速率及其理论分析值与窃听者天线数量的关系

    图  5  遍历安全速率及其解析解与RIS反射单元数的关系

    图  6  遍历安全速率与SNR关于均方根角度扩展的关系

    算法1 AO算法
     初始化:
     $ {{\boldsymbol{Q}}^{\left( 0 \right)}} = {{\boldsymbol{I}}_M} $, $ {{\boldsymbol{\varPhi }}^{\left( 0 \right)}} = {{\boldsymbol{\varPhi }}^0} $, $ b_i^{\left( 0 \right)}{\text{ = }}\tilde b_i^{\left( 0 \right)} = e_i^{\left( 0 \right)} = \tilde e_i^{\left( 0 \right)} = $$1\;\left( {i = 1,2} \right) $,
     $ {\bar C_{\text{s}}}^{\left( 1 \right)} = 0 $, $ \varepsilon = {10^{{{ - 4}}}} $
     (1) 循环
     (2) 过程1:给定$ {\boldsymbol{\varPhi }} $,注水算法求解最优解$ {{\boldsymbol{Q}}^{{\text{opt}}}} $
     (3) 根据式(11a)和式(16),计算$ {{\boldsymbol{F}}_{\text{u}}}^{\left( {t + 1} \right)} $,$ {{\boldsymbol{F}}_{\text{e}}}^{\left( {t + 1} \right)} $和$ {{\boldsymbol{K}}^{\left( {t + 1} \right)}} $;
     (4) 根据式(15)计算$ {{\boldsymbol{Q}}^{\left( {t + 1} \right)}} $,并且根据干扰功率约束
       $ {\text{E}}\{ {\text{tr}}({{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}}{\boldsymbol{Q}}{({{\boldsymbol{H}}_{\text{P}}}{\boldsymbol{\varPhi }}{{\boldsymbol{H}}_{\text{a}}})^{\text{H}}})\} \le M{P_{\text{I}}} $和发送功率约束
       $ {\text{ tr(}}{\boldsymbol{Q}}) \le M{P_{\text{T}}} $确定合适的$ {\lambda ^{\left( {t + 1} \right)}} $,$ {\nu ^{\left( {t + 1} \right)}} $;
     (5) 根据式(9)、式(10)计算$b_i^{\left( {t + 1} \right)},\tilde b_i^{\left( {t + 1} \right)},e_i^{\left( {t + 1} \right)},\tilde e_i^{\left( {t + 1} \right)} $
       $\left( {i = 1,2} \right)$,更新$ {{\boldsymbol{\tilde Q}}^{\left( {t + 1} \right)}} = {{\boldsymbol{Q}}^{\left( {t + 1} \right)}} $;
     (6) 根据式(8)计算$ {\bar C_{\text{s}}}\left( {{{\boldsymbol{Q}}^{\left( {t + 1} \right)}},{\boldsymbol{\varPhi }}} \right) $;
     (7) 更新$ t: = t + 1 $,直到$ \left| {{{\bar C}_{\text{s}}}({{\boldsymbol{Q}}^{\left( {t + 1} \right)}},{\boldsymbol{\varPhi }}) - {{\bar C}_{\text{s}}}({{\boldsymbol{Q}}^{\left( t \right)}},{\boldsymbol{\varPhi }})} \right| \le \varepsilon $;
     (8) 获得$ {{\boldsymbol{Q}}^{{\text{opt}}}} = {{\boldsymbol{Q}}^{\left( {t + 1} \right)}} $;
     (9) 过程2:给定$ {\boldsymbol{Q}} $,投影梯度上升法求解最优解$ {{\boldsymbol{\varPhi }}^{{\text{opt}}}} $
     (10) 根据式(30)更新$ {\mu ^{\left( {t + 1} \right)}} $;
     (11) 基于给定$ {{\boldsymbol{\varPhi }}^{\left( t \right)}} $,根据式(9)、式(10)计算
       $ b_i^{\left( {t + 1} \right)},\tilde b_i^{\left( {t + 1} \right)},e_i^{\left( {t + 1} \right)},\tilde e_i^{\left( {t + 1} \right)} $ $ \left( {i = 1,2} \right) $;
     (12) 根据式(28)计算$ {{\boldsymbol{\theta }}^{\left( {n + 1} \right)}} $,${ {\boldsymbol{\varPhi } }^{\left( {t + 1} \right)} } = {\rm{diag}}({ {\boldsymbol{\theta } }^{\left( {t + 1} \right)} })$;
     (13) 根据式(8)计算$ {\bar C_{\text{s}}}\left( {{\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}}} \right) $;
     (14) 更新$ t: = t + 1 $,直到$ \left| {{{\bar C}_{\text{s}}}{\text{(}}{\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}}{\text{)}} - {{\bar C}_{\text{s}}}({\boldsymbol{Q}},{{\boldsymbol{\varPhi }}^{\left( t \right)}})} \right| \le \varepsilon $
     (15) 获得$ {{\boldsymbol{\varPhi }}^{{\text{opt}}}} = {{\boldsymbol{\varPhi }}^{\left( {t + 1} \right)}} $;
     (16) 直到 $ \left| {{{\bar C}_{\text{s}}}\left( {{{\boldsymbol{Q}}^{{\text{opt}}}},{{\boldsymbol{\varPhi }}^{{\text{opt}}}}} \right) - {{\bar C}_{\text{s}}}\left( {{{\boldsymbol{Q}}^{\left( t \right)}},{{\boldsymbol{\varPhi }}^{\left( t \right)}}} \right)} \right| \le \varepsilon $,结束循环。
    下载: 导出CSV
  • [1] HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [2] LUO Caihong, LI Xiao, JIN Shi, et al. Reconfigurable intelligent surface-assisted multi-cell MISO communication systems exploiting statistical CSI[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2313–2317. doi: 10.1109/LWC.2021.3100427
    [3] 王丹, 陈小梦, 王勇芳. 可重构智能表面辅助无线通信的用户分配[J]. 电子与信息学报, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473

    WANG Dan, CHEN Xiaomeng, and WANG Yongfang. User assignment for wireless communication assisted by reconfigurable intelligent surfaces[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473
    [4] BEREYHI A, ASAAD S, MÜLLER R R, et al. Secure transmission in IRS-assisted MIMO systems with active eavesdroppers[C]. 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2020: 718–725.
    [5] BLOCH M and BARROS J. Physical-Layer Security: From Information Theory to Security Engineering[M]. New York: Cambridge University Press, 2011: 32–40.
    [6] YANG Xi, WEN Chaokai, and JIN Shi. MIMO detection for reconfigurable intelligent surface-assisted millimeter wave systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1777–1792. doi: 10.1109/JSAC.2020.3000822
    [7] CHU Zheng, HAO Wanming, XIAO Pei, et al. Intelligent reflecting surface aided multi-antenna secure transmission[J]. IEEE Wireless Communications Letters, 2020, 9(1): 108–112. doi: 10.1109/LWC.2019.2943559
    [8] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [9] FENG Keming, LI Xiao, HAN Yu, et al. Physical layer security enhancement exploiting intelligent reflecting surface[J]. IEEE Communications Letters, 2021, 25(3): 734–738. doi: 10.1109/LCOMM.2020.3042344
    [10] UL HASSAN M, REHMANI M H, REHAN M, et al. Differential privacy in cognitive radio networks: A comprehensive survey[J]. Cognitive Computation, 2022, 14(2): 475–510. doi: 10.1007/s12559-021-09969-9
    [11] LIANG Yingchang, CHEN K C, LI G Y, et al. Cognitive radio networking and communications: An overview[J]. IEEE Transactions on Vehicular Technology, 2011, 60(7): 3386–3407. doi: 10.1109/TVT.2011.2158673
    [12] YUAN Jie, LIANG Yingchang, JOUNG J, et al. Intelligent reflecting surface-assisted cognitive radio system[J]. IEEE Transactions on Communications, 2021, 69(1): 675–687. doi: 10.1109/TCOMM.2020.3033006
    [13] XU Dongfang, YU Xianghao, SUN Yan, et al. Resource allocation for IRS-assisted full-duplex cognitive radio systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7376–7394. doi: 10.1109/TCOMM.2020.3020838
    [14] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Joint power control and passive beamforming in IRS-assisted spectrum sharing[J]. IEEE Communications Letters, 2020, 24(7): 1553–1557. doi: 10.1109/LCOMM.2020.2979709
    [15] MAKARFI A U, KHAREL R, RABIE K M, et al. Reconfigurable intelligent surfaces based cognitive radio networks[C]. 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China, 2021: 1–6.
    [16] PEI Yiyang, LIANG Yingchang, ZHANG Lan, et al. Secure communication over MISO cognitive radio channels[J]. IEEE Transactions on Wireless Communications, 2010, 9(4): 1494–1502. doi: 10.1109/TWC.2010.04.090746
    [17] WU Xuewen, MA Jingxiao, GU Chenwei, et al. Robust secure transmission design for IRS-assisted mmWave cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8441–8456. doi: 10.1109/TVT.2022.3172293
    [18] DONG Limeng, WANG Huiming, and XIAO Haitao. Secure cognitive radio communication via intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(7): 4678–4690. doi: 10.1109/TCOMM.2021.3073028
    [19] ZHANG Jun, LIU Jie, MA Shaodan, et al. Large system achievable rate analysis of RIS-assisted MIMO wireless communication with statistical CSIT[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5572–5585. doi: 10.1109/TWC.2021.3068494
    [20] ZHANG Jun, YUEN C, WEN Chaokai, et al. Large system secrecy rate analysis for SWIPT MIMO wiretap channels[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(1): 74–85. doi: 10.1109/TIFS.2015.2477050
    [21] TARICCO G. Asymptotic mutual information statistics of separately correlated Rician fading MIMO channels[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3490–3504. doi: 10.1109/TIT.2008.926415
    [22] WEN Chaokai, CHEN J C, and TING Pangan. Robust transmitter design for amplify-and-forward MIMO relay systems exploiting only channel statistics[J]. IEEE Transactions on Wireless Communications, 2012, 11(2): 668–682. doi: 10.1109/TWC.2011.121911.110193
    [23] MOUSTAKAS A L, SIMON S H, and SENGUPTA A M. MIMO capacity through correlated channels in the presence of correlated interferers and noise: A (not so) large N analysis[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2545–2561. doi: 10.1109/TIT.2003.817427
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  692
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-10-11
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回