高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超表面的超宽带线极化转换特性研究

王玥 姚震宇 崔子健 朱永强 张达篪 胡辉 张狂

王玥, 姚震宇, 崔子健, 朱永强, 张达篪, 胡辉, 张狂. 基于超表面的超宽带线极化转换特性研究[J]. 电子与信息学报, 2022, 44(12): 4116-4124. doi: 10.11999/JEIT220447
引用本文: 王玥, 姚震宇, 崔子健, 朱永强, 张达篪, 胡辉, 张狂. 基于超表面的超宽带线极化转换特性研究[J]. 电子与信息学报, 2022, 44(12): 4116-4124. doi: 10.11999/JEIT220447
WANG Yue, YAO Zhenyu, CUI Zijian, ZHU Yongqiang, ZHANG Dachi, HU Hui, ZHANG Kuang. Research on Ultra-wideband Linear Polarization Conversion Characteristics Based on Metasurfaces[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4116-4124. doi: 10.11999/JEIT220447
Citation: WANG Yue, YAO Zhenyu, CUI Zijian, ZHU Yongqiang, ZHANG Dachi, HU Hui, ZHANG Kuang. Research on Ultra-wideband Linear Polarization Conversion Characteristics Based on Metasurfaces[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4116-4124. doi: 10.11999/JEIT220447

基于超表面的超宽带线极化转换特性研究

doi: 10.11999/JEIT220447
基金项目: 国家自然科学基金(62275215, 61975163),陕西省自然科学基金(2020JZ-48),陕西高校青年创新团队项目(21JP084)
详细信息
    作者简介:

    王玥:男,教授,研究方向为碳基纳米材料的天线与传播、太赫兹光谱、表面等离子体激元、太赫兹超材料和应用

    姚震宇:男,硕士生,研究方向为太赫兹超材料、太赫兹波极化调控、波前调控

    崔子健:男,博士生,研究方向为太赫兹超材料吸收体、太赫兹极化转换器和相位梯度超表面

    朱永强:男,硕士生,研究方向为太赫兹超材料、机器学习和深度学习在超表面设计中的应用

    张达篪:男,硕士生,研究方向为太赫兹超材料、连续体中束缚态

    胡辉:男,副教授,研究方向为光电子器件、太赫兹波科学与技术

    张狂:男,教授,研究方向为微波技术、超材料器件

    通讯作者:

    王玥 wangyue2017@xaut.edu.cn

  • 中图分类号: TN015

Research on Ultra-wideband Linear Polarization Conversion Characteristics Based on Metasurfaces

Funds: The National Natural Science Foundation of China (62275215, 61975163), The Natural Science Foundation of Shaanxi Province (2020JZ-48), The Youth Innovation Team Subject of Shaanxi Universities (21JP084)
  • 摘要: 极化转换在太赫兹调制领域具有重要的研究意义和应用价值。传统的极化转换器件存在尺寸大、集成度低、损耗高、带宽窄等诸多不足。该文提出一种对称“山”型超表面共振单元结构,可用于实现反射、透射极化转换器件的设计。其中反射型器件实现了极高极化转换率的宽带线极化转换,透射型器件实现了相对带宽达135.5%的超宽带线极化转换。采用各向异性理论分析了反射型器件产生极化转换的机制,并基于多重干涉理论对共振结构阵列与金属背板构成的类F-P腔进行了计算,计算结果与仿真吻合较好。进一步使用正交线栅类F-P腔与共振结构阵列,构成透射型器件,并深入分析了共振单元结构不同部分对宽带极化转换的贡献,讨论了不同结构形成的极化转换频段间的耦合方式。研究结果为基于固定相位差的超宽带偏振极化转换器件的实现以及超表面类F-P腔应用提供了新的思路。
  • 图  1  反射式单元结构、透射式单元结构与共振单元结构的示意图

    图  2  反射式器件示意图与共极化、交叉极化反射系数及PCR

    图  3  不同频率反射波在不同方向上的反射系数

    图  4  极化转换模型与u轴和v轴入射时电磁波的反射振幅和相位

    图  5  有无金属背板时的反射系数对比图与多重干涉示意图

    图  6  反射型器件共振结构阵列的透射、反射系数及透射、反射相位与多重干涉理论计算结果

    图  7  透射式器件示意图与交叉极化透射系数、共极化反射系数及PCR

    图  8  透射型器件共振结构阵列的透射、反射系数及相位与多重干涉理论计算结果

    图  9  基于不同共振结构阵列设计的极化转换透射系数

    表  1  透射型极化转换器件对比

    谐振器几何形状层数介质层材料工作频段相对带宽(%)参考文献
    条形槽2F4B30~37 GHz20.1[29]
    垂直条带2Taconic TLY-515.3~33.1 GHz70[30]
    圆弧与折线2Teflon6.8~17.32 GHz87.2[38]
    开口谐振环与H谐振器3COC0.22~1.22 THz133[27]
    对称“山”型3Polyimide0.495~2.58 THz135.5本文
    下载: 导出CSV
  • [1] QI Yunping, ZHANG Baohe, LIU Chuqin, et al. Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction[J]. IEEE Access, 2020, 8: 116675–116684. doi: 10.1109/access.2020.3004127
    [2] XI Yan, JIANG Wen, HONG Tao, et al. Wideband and wide-angle radar cross section reduction using a hybrid mechanism metasurface[J]. Optics Express, 2021, 29(14): 22427. doi: 10.1364/oe.429972
    [3] FENG Rui, RATNI B, YI Jianjia, et al. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650–1659. doi: 10.1364/prj.428853
    [4] WANG Zhengxing, WU Junwei, WU Liangwei, et al. High efficiency polarization‐encoded holograms with ultrathin bilayer spin‐decoupled information metasurfaces[J]. Advanced Optical Materials, 2021, 9(5): 2001609. doi: 10.1002/adom.202001609
    [5] DING Fei, CHANG Bingdong, WEI Qunshuo, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser & Photonics Reviews, 2020, 14(11): 2000116. doi: 10.1002/lpor.202000116
    [6] WU Zhixiang, DONG Fengliang, ZHANG Shuo, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180–189. doi: 10.1021/acsphotonics.9b01356
    [7] WU Tong, ZHANG Xueqian, XV Quan, et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2022, 10(1): 2101223. doi: 10.1002/adom.202101223
    [8] LI Jie, ZHENG Chenglong, LI Jitao, et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface[J]. Photonics Research, 2021, 9(10): 1939–1947. doi: 10.1364/prj.431019
    [9] XU Hexiu, HU Guangwei, HAN Lei, et al. Chirality‐assisted high‐efficiency metasurfaces with independent control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2019, 7(4): 1801479. doi: 10.1002/adom.201801479
    [10] LI Haipeng, WANG Guangming, HU Guangwei, et al. 3D‐printed curved metasurface with multifunctional wavefronts[J]. Advanced Optical Materials, 2020, 8(15): 2000129. doi: 10.1002/adom.202000129
    [11] XU Hexiu, WANG Chaohui, HU Guangwei, et al. Spin‐encoded wavelength‐direction multitasking Janus metasurfaces[J]. Advanced Optical Materials, 2021, 9(11): 2100190. doi: 10.1002/adom.202100190
    [12] XU Hexiu, HU Guangwei, WANG Yanzhao, et al. Polarization-insensitive 3D conformal-skin metasurface cloak[J]. Light:Science & Applications, 2021, 10(1): 75. doi: 10.1038/s41377-021-00507-8
    [13] XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Deterministic approach to achieve full-polarization cloak[J]. Research, 2021, 2021: 6382172. doi: 10.34133/2021/6382172
    [14] ZHANG Ziyang, FAN Fei, LI Tengfei, et al. Terahertz polarization conversion and sensing with double-layer chiral metasurface[J]. Chinese Physics B, 2020, 29(7): 078707. doi: 10.1088/1674-1056/ab9294
    [15] BAI Jing and YAO Yu. Highly efficient anisotropic chiral plasmonic metamaterials for polarization conversion and detection[J]. ACS Nano, 2021, 15(9): 14263–14274. doi: 10.1021/acsnano.1c02278
    [16] STAV T, FAERMAN A, MAGUID E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 2018, 361(6407): 1101–1104. doi: 10.1126/science.aat9042
    [17] WANG Jianwei, PAESANI S, DING Yunhong, et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 2018, 360(6386): 285–291. doi: 10.1126/science.aar7053
    [18] WANG Kai, TITCHENER J G, KRUK S S, et al. Quantum metasurface for multiphoton interference and state reconstruction[J]. Science, 2018, 361(6407): 1104–1108. doi: 10.1126/science.aat8196
    [19] HAO Jiaming, YUAN Yu, RAN Lixin, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908
    [20] LIN Baoqin, LV Lintao, GUO Jianxin, et al. An Ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface[J]. IEEE Access, 2020, 8: 82732–82740. doi: 10.1109/access.2020.2988058
    [21] QUADER S, ZHANG Jin, AKRAM M R, et al. Graphene-based high-efficiency broadband tunable linear-to-circular polarization converter for terahertz waves[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 4501008. doi: 10.1109/jstqe.2020.2969566
    [22] WU P C, SOKHOYAN R, SHIRMANESH G K, et al. Near‐infrared active metasurface for dynamic polarization conversion[J]. Advanced Optical Materials, 2021, 9(16): 2100230. doi: 10.1002/adom.202100230
    [23] ZHANG Houjiao, LIU Ye, LIU Zhengqi, et al. Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors[J]. Optics Express, 2020, 29(1): 70–81. doi: 10.1364/oe.412925
    [24] JIANG Yannan, WANG Lei, WANG Jiao, et al. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies[J]. Optics Express, 2015, 25(22): 27616–27623. doi: 10.1364/oe.25.027616
    [25] SUN Zhiwei, SIMA Boyu, ZHAO Junming, et al. Electromagnetic polarization conversion based on Huygens' metasurfaces with coupled electric and magnetic resonances[J]. Optics Express, 2019, 27(8): 11006–11017. doi: 10.1364/OE.27.011006
    [26] GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307. doi: 10.1126/science.1235399
    [27] AKO R T, LEE W S L, ATAKARAMIANS S, et al. Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves[J]. APL Photonics, 2020, 5(4): 046101. doi: 10.1063/1.5144115
    [28] XU Shitong, FAN Fei, JI Yunyun, et al. Multi-band terahertz linear polarization converter based on carbon nanotube integrated metamaterial[J]. Optics Express, 2021, 29(6): 8824–8833. doi: 10.1364/oe.421552
    [29] FEI Peng, VANDENBOSCH G A E, GUO Weihua, et al. Versatile cross‐polarization conversion chiral metasurface for linear and circular polarizations[J]. Advanced Optical Materials, 2020, 8(13): 2000194. doi: 10.1002/adom.202000194
    [30] WANG Hongbin, CHENG Yujian, and CHEN Zhining. Wideband and wide-angle single-layered-substrate linear-to-circular polarization metasurface converter[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1186–1191. doi: 10.1109/tap.2019.2938683
    [31] ARNIERI E, GRECO F, and AMENDOLA G. Wide-angle scanning, linear-to-circular polarization converter based on standard jerusalem cross frequency selective surfaces[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 578–583. doi: 10.1109/tap.2020.3004981
    [32] LIN Rong, LU Fake, HE Xiaoliang, et al. Multiple interference theoretical model for graphene metanmaterial-based tunable brodaband terahertz linear polarization converter design and optimization[J]. Optics Express, , 2021, 29(19): 30357–30370. doi: 10.1364/OE438256
    [33] WANG Yelong, QI Feng, LIU Zhaoyang, et al. Ultrathin and flexible reflective polarization converter based on metasurfaces with overlapped arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2512–2526. doi: 10.1109/lawp.2020.3037907
    [34] LEE S, KIM W T, KANG J H, et al. Single-layer metasurfaces as spectrally tunable terahertz half- and quarter-waveplates[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 7655–7660. doi: 10.1021/acsami.8b21456
    [35] YANG Xue, ZHANG Bo, and SHEN Jingling. An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial[J]. Optical and Quantum Electronics, 2018, 50(8): 315. doi: 10.1007/s11082-018-1571-4
    [36] SLOVICK B A, YU Zhigang, and KRISHNAMURTHY S. Generalized effective-medium theory for metamaterials[J]. Physical Review B, 2014, 89(15): 155118. doi: 10.1103/PhysRevB.89.155118
    [37] CHEN Houtong, ZHOU Jiangfeng, O'HARA J F, et al. Antireflection coating using metamaterials and identification of its mechanism[J]. Physical Review Letters, 2010, 105(7): 073901. doi: 10.1103/PhysRevLett.105.073901
    [38] HU Yanwen, WANG Yu, YAN Zhongming, et al. Linear-to-circular polarization converters with both E-field and H-field hybrid responses[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1433–1439. doi: 10.1109/tap.2020.3016504
    [39] KUMAR A and GHATAK A. Polarization of Light with Applications in Optical Fibers[M]. Bellingham SPIE Press, 2011: 75–96.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  530
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 修回日期:  2022-09-02
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2022-12-10

目录

    /

    返回文章
    返回