高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外非均匀虚拟势场下无人机编队重构避碰算法

赵太飞 张健伟 容开新 张雯

赵太飞, 张健伟, 容开新, 张雯. 紫外非均匀虚拟势场下无人机编队重构避碰算法[J]. 电子与信息学报. doi: 10.11999/JEIT220442
引用本文: 赵太飞, 张健伟, 容开新, 张雯. 紫外非均匀虚拟势场下无人机编队重构避碰算法[J]. 电子与信息学报. doi: 10.11999/JEIT220442
ZHAO Taifei, ZHANG Jianwei, RONG Kaixin, ZHANG Wen. Collision Avoidance Algorithm for UAV Formation Reconfiguration Under UV Non-uniform Virtual Potential Field[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT220442
Citation: ZHAO Taifei, ZHANG Jianwei, RONG Kaixin, ZHANG Wen. Collision Avoidance Algorithm for UAV Formation Reconfiguration Under UV Non-uniform Virtual Potential Field[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT220442

紫外非均匀虚拟势场下无人机编队重构避碰算法

doi: 10.11999/JEIT220442
基金项目: 国家自然科学基金 (61971345),陕西省重点研发计划 (2021GY-044),西安市碑林区科技计划 (GX1921),榆林市科技项目(2019-145),西安市科学计划(CXY1835(4))
详细信息
    作者简介:

    赵太飞:男,教授,研究方向为无线紫外光通信、无线光通信与组网

    张健伟:男,硕士生,研究方向为蜂群无人机组网与控制

    容开新:女,硕士生,研究方向为无人机路径规划

    张雯:女,讲师,研究方向为无线光通信

    通讯作者:

    赵太飞 year623@163.com

  • 中图分类号: TN929.12

Collision Avoidance Algorithm for UAV Formation Reconfiguration Under UV Non-uniform Virtual Potential Field

Funds: The National Natural Science Foundation of China (61971345), The Key R & D Plan of Shaanxi Province (2021GY-044), Xi’an Beilin District Science and Technology Plan (GX1921), Yulin Science and Technology Project (2019-145), Xi’an Science Planning Project (CXY1835(4))
  • 摘要: 针对复杂电磁环境下无人机编队重构过程中的路径规划和机间避碰问题,该文在传统紫外虚拟势场基础上,利用距离因子对斥力函数进行了改进,构建了一种紫外非均匀虚拟势场来协助无人机进行机间避碰。改进的紫外非均匀虚拟势场可以使得无人机避碰路径更加平滑,相同时间内,无人机可以飞行更远的距离。此外,通过无线紫外光测距方法计算无人机机间距离,并结合紫外非均匀势场对传统的人工势场法进行改进,实现无人机编队重构。仿真结果表明,该文算法可以有效解决传统算法下路径振荡和局部最小值问题,同时避碰效率相比传统人工势场算法有明显提升,在预设环境中本文算法路程缩短6%,到达目标点的时间提前40%。最后在两种不同的队形重构场景下,对本文算法进行了验证,结果表明本文算法可以有效实现无人机队形重构中预期的机间避碰效果。
  • 图  1  紫外光RSSI测距原理图

    图  2  球形紫外MIMO结构图

    图  3  无人机信息交互图

    图  4  机间定位几何关系图

    图  5  紫外光虚拟势场区域划分

    图  6  路径振荡问题

    图  7  避障路径对比

    图  8  避障效率对比

    图  9  施加[0.5,0.5,0.5]的外力

    图  10  路径振荡图

    图  11  路径振荡中的飞行距离

    图  12  3角编队-横一队

    图  13  队形重构过程中的避碰

    图  14  无人机间隔距离

    表  1  坐标参数

    起点目标点障碍物1障碍物2障碍物3障碍物4障碍物5
    坐标(10,100)(190,120)(130,95)(100,110)(80,130)(160,80)(50,100)
    半径(m)//7510510
    下载: 导出CSV

    表  2  编队队形设计1

    UAV1UAV2UAV3UAV4UAV5
    起始队形(20,100,100)(60,100,100)(100,100,100)(125,100,100)(180,100,100)
    目标队形(50,50,100)(75,100,100)(100,150,100)(125,100,100)(150,50,100)
    下载: 导出CSV

    表  3  编队队形设计2

    UAV1UAV2UAV3UAV4
    起始队形(20,20,95)(180,20,95)(20,180,95)(180,180,95)
    目标队形(120,80,105)(80,80,105)(120,120,105)(80,120,105)
    下载: 导出CSV
  • [1] 沈林成, 牛轶峰, 朱华勇. 多无人机自主协同控制理论与方法[M]. 北京: 国防工业出版社, 2013: 1–9.

    SHEN Lincheng, NIU Yifeng, and ZHU Huayong. Theories and Methods of Autonomous Cooperative Control for Multiple UAVs[M]. Beijing: National Defense Industry Press, 2013: 1–9.
    [2] KANG Yuhang, KUANG Yu, CHENG Jun, et al. Robust leaderless time-varying formation control for unmanned aerial vehicle swarm system with Lipschitz nonlinear dynamics and directed switching topologies[J]. Chinese Journal of Aeronautics, 2022, 35(1): 124–136. doi: 10.1016/j.cja.2021.05.017
    [3] CHUNG S J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4): 837–855. doi: 10.1109/TRO.2018.2857475
    [4] AYAWLI B B K, MEI Xue, SHEN Mouquan, et al. Mobile robot path planning in dynamic environment using Voronoi diagram and computation geometry technique[J]. IEEE Access, 2019, 7: 86026–86040. doi: 10.1109/ACCESS.2019.2925623
    [5] Bayili S, Polat F. Limited-Damage A*: A path search algorithm that considers damage as a feasibility criterion[J]. Knowledge-Based Systems, 2011, 24(4): 501–512.
    [6] BANSAL J C, GOPAL A, and NAGAR A K. Stability analysis of Artificial Bee Colony optimization algorithm[J]. Swarm and Evolutionary Computation, 2018, 41: 9–19. doi: 10.1016/j.swevo.2018.01.003
    [7] GAO Chen, ZHEN Ziyang, and GONG Huajun. A self-organized search and attack algorithm for multiple unmanned aerial vehicles[J]. Aerospace Science and Technology, 2016, 54: 229–240. doi: 10.1016/j.ast.2016.03.022
    [8] SHAO S, PENG Y, HE C, et al. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J]. ISA transactions, 2020, 97: 415–430.
    [9] WU E, SUN Y, HUANG J, et al. Multi uav cluster control method based on virtual core in improved artificial potential field[J]. IEEE Access, 2020, 8: 131647–131661.
    [10] SUN Hang, QI Juntong, WU Chong, et al. Path planning for dense drone formation based on modified artificial potential fields[C]. The 39th Chinese Control Conference (CCC), Shenyang, China, 2020: 4658–4664.
    [11] GARG K K, SHAIK P, and BHATIA V. Performance analysis of cooperative relaying technique for non-line-of-sight UV communication system in the presence of turbulence[J]. Optical Engineering, 2020, 59(5): 055101. doi: 10.1117/1.OE.59.5.055101
    [12] ZHENG Xuan, TANG Yanfeng, DU Jingyi. Analysis of transmission characteristics of non-line-of-sight ultraviolet light under complex channel conditions[J]. MATEC Web of Conferences, 2021, 336(2): 1–7.
    [13] 赵太飞, 王晶, 张杰, 等. 蛙人协作中的水下无线光通信邻居发现方法[J]. 光学学报, 2018, 38(12): 1206002.

    ZHAO Taifei, WANG Jing, ZHANG Jie, et al. Neighbor Discovery Method for Frogmen Cooperation in Underwater Wireless Optical Communication[J]. Acta Optica Sinica, 2018, 38(12): 1206002.
    [14] ZHAO Taifei, XIE Ying, XU Shan, et al. Flocking of UAV formation with wireless ultraviolet communication[J]. Wireless Personal Communications, 2020, 114(3): 2551–2568. doi: 10.1007/s11277-020-07489-7
    [15] XU Zhengyuan. Approximate performance analysis of wireless ultraviolet links[C]. 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07, Honolulu, USA, 2007: III-577–III-580.
    [16] 赵太飞, 余叙叙, 包鹤, 等. 无线日盲紫外光测距定位方法[J]. 光学 精密工程, 2017, 25(9): 2324–2332. doi: 10.3788/OPE.20172509.2324

    ZHAO Taifei, YU Xuxu, BAO He, et al. Ranging and positioning method using wireless solar blind ultraviolet[J]. Optics and Precision Engineering, 2017, 25(9): 2324–2332. doi: 10.3788/OPE.20172509.2324
    [17] Vasilyev G S, Kuzichkin O R, Surzhik D I. Performance analysis of MIMO communication system with NLOS UV channel[J]. Photonics Letters of Poland, 2020, 12(4): 91–93.
    [18] ZHAO Taifei, XIE Ying, LIU Xue, et al. Research on novel fountain code for UAV formation flight control in UV communication[C]. The 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Xi'an, China, 2017: 120–123.
    [19] 邓婉, 王新民, 王晓燕, 等. 无人机编队队形保持变换控制器设计[J]. 计算机仿真, 2011, 28(10): 73–77.

    DENG Wan, WANG Xinmin,WANG Xiaoyan, et al. Controller design of UAVs formation keep and change[J]. Computer Integrated Manufacturing Systems, 2011, 28(10): 73–77.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  28
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 录用日期:  2022-08-25
  • 修回日期:  2022-08-23
  • 网络出版日期:  2022-08-30

目录

    /

    返回文章
    返回