高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不准确CSI下智能反射表面辅助的多用户系统物理层安全方案设计

雷维嘉 翟泽旭 雷宏江 唐宏

雷维嘉, 翟泽旭, 雷宏江, 唐宏. 不准确CSI下智能反射表面辅助的多用户系统物理层安全方案设计[J]. 电子与信息学报, 2022, 44(7): 2299-2308. doi: 10.11999/JEIT220405
引用本文: 雷维嘉, 翟泽旭, 雷宏江, 唐宏. 不准确CSI下智能反射表面辅助的多用户系统物理层安全方案设计[J]. 电子与信息学报, 2022, 44(7): 2299-2308. doi: 10.11999/JEIT220405
LEI Weijia, ZHAI Zexu, LEI Hongjiang, TANG Hong. Design of Physical Layer Security Scheme for Intelligent Reflecting Surface Assisted Multi-User System with Imperfect CSI[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2299-2308. doi: 10.11999/JEIT220405
Citation: LEI Weijia, ZHAI Zexu, LEI Hongjiang, TANG Hong. Design of Physical Layer Security Scheme for Intelligent Reflecting Surface Assisted Multi-User System with Imperfect CSI[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2299-2308. doi: 10.11999/JEIT220405

不准确CSI下智能反射表面辅助的多用户系统物理层安全方案设计

doi: 10.11999/JEIT220405
基金项目: 国家自然科学基金(61971080)
详细信息
    作者简介:

    雷维嘉:男,1969年生,博士,教授,主要研究方向为无线通信和移动通信技术

    翟泽旭:男,1998年生,硕士生,研究方向为智能反射面和物理层安全通信技术

    通讯作者:

    翟泽旭 982876720@qq.com

  • 中图分类号: TN911

Design of Physical Layer Security Scheme for Intelligent Reflecting Surface Assisted Multi-User System with Imperfect CSI

Funds: The National Natural Science Foundation of China (61971080)
  • 摘要: 该文研究智能反射表面(Intelligent Reflecting Surface, IRS)辅助的多用户下行系统中的物理层安全的优化问题。多个用户之间的信息需要相互保密,每个时隙,非信息传输的目标用户视为窃听者,因此这是一个多窃听者的安全传输系统。由于信道的时变性,基站拥有窃听信道的信道状态信息(Channel State Information, CSI)为与真实的CSI间存在误差的过时信息。在此条件下,以系统最坏情况下的保密速率最大化为目标,对基站发射信息信号和人工噪声波束成形矢量,以及IRS的相移矩阵进行联合优化。原始优化问题为非凸半正定规划问题,利用松弛变量、惩罚函数、Charnes-Cooper变换和交替迭代优化等方法将原问题转化为凸问题并求解。仿真结果显示,相较于基准方案,该文所提出的优化算法能有效提高系统的保密速率。
  • 图  1  IRS 辅助的安全通信系统模型

    图  2  Alice发射功率对系统保密速率的影响

    图  3  Alice发射天线数对系统保密速率的影响

    图  4  Rose 反射单元数对系统保密速率的影响

    图  5  窃听者数目对系统保密速率的影响

    图  6  信道误差容忍度对系统保密速率的影响

    图  7  交替迭代算法收敛过程

    表  1  优化问题式(9)的求解算法(算法1)

     (1)初始化参数:步长$\delta $,$i = 1$,$\varOmega = \varnothing$,${\beta ^{(1)}} = 1$.
     (2)while:
     (3)给定${\beta ^{(i)}}$,求解问题(16),得到解$ \varphi ({\beta ^{(i)}}) $.
     (4)$\varOmega = \varOmega \cup \varphi ({\beta ^{(i)} })$,$i = i + 1$.
     (5)更新${\beta ^{(i)}} = {\beta ^{(i - 1)}} + \delta $.
     (6)until${\beta ^{(i)}} > 1 + \sigma _{\text{B}}^{ - 2}P\left\| {{{\mathbf{h}}_{{\text{AB}}}}} \right\|_{\text{F}}^2$.
     (7)输出$\varOmega$中最大值$ \varphi ({\beta ^{{\text{opt}}}}) $及其对应的${\beta ^{{\text{opt}}}}$.
    下载: 导出CSV

    表  2  第2层优化问题(16)的求解算法(算法2)

     (1)初始化参数:迭代次数$m = 0$,${{\boldsymbol{\varPhi}} ^{(0)} }$,$ \zeta $.
     (2)while:
     (3)$m = m + 1$.
     (4)令${\boldsymbol{\varPhi}} = {{\boldsymbol{\varPhi}} ^{(m - 1)} }$,求解问题式(18),得到$ {{\boldsymbol{Q}}^{(m)}} $, ${{\boldsymbol{Z}}^{(m)}}$与$ {\xi ^{(m)}} $.
     (5)利用公式$ {{\boldsymbol{W}}_1} = {{\boldsymbol{Q}} \mathord{\left/ {\vphantom {{\boldsymbol{Q}} \xi }} \right. } \xi } $与$ {{\boldsymbol{W}}_2} = {{\boldsymbol{Z}} \mathord{\left/ {\vphantom {{\boldsymbol{Z}} \xi }} \right. } \xi } $得到$ {{\boldsymbol{W}}_1}^{(m)} $与$ {{\boldsymbol{W}}_2}^{(m)} $.
     (6)令$ {{\boldsymbol{W}}_1} = {\boldsymbol{W}}_1^{(m)} $与$ {{\boldsymbol{W}}_2} = {\boldsymbol{W}}_2^{(m)} $,求解问题式(25),得到
       $ {{\boldsymbol{E}}^{(m)}} $与$ {\xi ^{(m)}} $.
     (7)利用公式$ {\boldsymbol{V}} = {{\boldsymbol{E}} \mathord{\left/ {\vphantom {{\boldsymbol{E}} \xi }} \right. } \xi } $,得到$ {{\boldsymbol{V}}^{(m)}} $,再对$ {{\boldsymbol{V}}^{(m)}} $进行特征值分解
       得到特征向量$ {{\boldsymbol{v}}^{(m)}} $,由$ {{\boldsymbol{v}}^{(m)}} $得到对角化矩阵${{\boldsymbol{\varPhi}} ^{(m)} }$.
     (8)until${ {\left( {R_{\text{S} }^{(m)} - R_{\text{S} }^{(m - 1)} } \right)}/ {R_{\text{S} }^{(m)} } } \le \zeta$.
     (9)对$ {\boldsymbol{W}}_1^{(m)} $、$ {\boldsymbol{W}}_2^{(m)} $进行特征值分解可得${{\boldsymbol{w}}_1}^{(m)}$, ${{\boldsymbol{w}}_2}^{(m)}$.
     (10)输出$ {\boldsymbol{w}}_{\text{1}}^{{\text{opt}}} = {\boldsymbol{w}}_1^{(m)} $,$ {\boldsymbol{w}}_2^{{\text{opt}}} = {\boldsymbol{w}}_2^{(m)} $,${{\boldsymbol{\varPhi}} ^{ {\text{opt} } } } = {{\boldsymbol{\varPhi}} ^{(m)} }$.
    下载: 导出CSV
  • [1] ZHANG Shunqing, WU Qingqing, XU Shugong, et al. Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 33–56. doi: 10.1109/COMST.2016.2594120
    [2] 雷维嘉, 林秀珍, 杨小燕, 等. 利用人工噪声提高合法接收者性能的物理层安全方案[J]. 电子与信息学报, 2016, 38(11): 2887–2892. doi: 10.11999/JEIT160054

    LEI Weijia, LIN Xiuzhen, YANG Xiaoyan, et al. Physical layer security scheme exploiting artificial noise to improve the performance of legitimate user[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2887–2892. doi: 10.11999/JEIT160054
    [3] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [4] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629
    [5] HONG Sheng, PAN Cunhua, REN Hong, et al. Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface[J]. IEEE Transactions on Communications, 2020, 68(12): 7851–7866. doi: 10.1109/TCOMM.2020.3024621
    [6] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685
    [7] DE ARAÚJO G T and DE ALMEIDA A L F. PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 2020: 1–5.
    [8] ZHENG Beixiong and ZHANG Rui. Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[J]. IEEE Wireless Communications Letters, 2020, 9(4): 518–522. doi: 10.1109/LWC.2019.2961357
    [9] YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043
    [10] HONG Sheng, PAN Cunhua, REN Hong, et al. Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2487–2501. doi: 10.1109/TWC.2020.3042828
    [11] DONG Limeng, WANG Huiming, and XIAO Haitao. Secure cognitive radio communication via intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(7): 4678–4690. doi: 10.1109/TCOMM.2021.3073028
    [12] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Britain: Cambridge University Press, 2004: 131–133.
    [13] LI Qiang and MA W K. Spatially selective artificial-noise aided transmit optimization for MISO multi-eves secrecy rate maximization[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2704–2717. doi: 10.1109/TSP.2013.2253771
    [14] LUO Zhiquan, STURM J F, and ZHANG Shuzhong. Multivariate nonnegative quadratic mappings[J]. SIAM Journal on Optimization, 2004, 14(4): 1140–1162. doi: 10.1137/S1052623403421498
    [15] MICHAEL C, STEPHEN B. The CVX users’ guide[EB/OL]. http://cvxr.com/cvx/, 2020.
    [16] LI Qiang and MA W K. Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3799–3812. doi: 10.1109/TSP.2011.2146775
    [17] YAN Wenjing, YUAN Xiaojun, HE Zhenqing, et al. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1793–1808. doi: 10.1109/JSAC.2020.3000811
    [18] LIAO Weicheng, CHANG Tsunghui, MA Wingkin, et al. QoS-based transmit beamforming in the presence of eavesdroppers: An optimized artificial-noise-aided approach[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1202–1216. doi: 10.1109/TSP.2010.2094610
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  421
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-06-21
  • 网络出版日期:  2022-06-27
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回