高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于检测硬件木马延时的线性判别分析算法

宋钛 黄正峰 徐辉

宋钛, 黄正峰, 徐辉. 用于检测硬件木马延时的线性判别分析算法[J]. 电子与信息学报, 2023, 45(1): 59-67. doi: 10.11999/JEIT220389
引用本文: 宋钛, 黄正峰, 徐辉. 用于检测硬件木马延时的线性判别分析算法[J]. 电子与信息学报, 2023, 45(1): 59-67. doi: 10.11999/JEIT220389
SONG Tai, HUANG Zhengfeng, XU Hui. Linear Discriminant Analysis Algorithm for Detecting Hardware Trojans Delay[J]. Journal of Electronics & Information Technology, 2023, 45(1): 59-67. doi: 10.11999/JEIT220389
Citation: SONG Tai, HUANG Zhengfeng, XU Hui. Linear Discriminant Analysis Algorithm for Detecting Hardware Trojans Delay[J]. Journal of Electronics & Information Technology, 2023, 45(1): 59-67. doi: 10.11999/JEIT220389

用于检测硬件木马延时的线性判别分析算法

doi: 10.11999/JEIT220389
基金项目: 国家自然科学基金(61874156, 62174001),安徽省基金(202104b11020032, 2208085J02)
详细信息
    作者简介:

    宋钛:男,博士,讲师,主要研究方向为集成电路测试和硬件安全

    黄正峰:男,博士,教授,博士生导师,主要研究方向为容错计算

    徐辉:男,教授,硕士生导师,主要研究方向为集成电路设计与老化测试

    通讯作者:

    黄正峰 huangzhengfeng@139.com

  • 中图分类号: TN406; TN710

Linear Discriminant Analysis Algorithm for Detecting Hardware Trojans Delay

Funds: The National Natural Science Foundation of China (61874156, 62174001), Anhui Province Foundation (202104b11020032, 2208085J02)
  • 摘要: 针对芯片生产链长、安全性差、可靠性低,导致硬件木马防不胜防的问题,该文提出一种针对旁路信号分析的木马检测方法。首先采集不同电压下电路的延时信号,通过线性判别分析(LDA)分类算法找出延时差异,若延时与干净电路相同,则判定为干净电路,否则判定有木马。然后联合多项式回归算法对木马延时特征进行拟合,基于回归函数建立木马特征库,最终实现硬件木马的准确识别。实验结果表明,提出的LDA联合线性回归(LR)算法可以根据延时特征识别木马电路,其木马检测率优于其他木马检测方法。更有利的是,随着电路规模的增大意味着数据量的增加,这更便于进行数据分析与特征提取,降低了木马检测难度。通过该方法的研究,对未来工艺极限下识别木马电路、提高芯片安全性与可靠性具有重要的指导作用。
  • 图  1  硬件木马结构

    图  2  延时信号分析

    图  3  LDA分类算法

    图  4  线性回归方程

    图  5  实验设置

    图  6  实验流程

    图  7  不同电压下木马电路与干净电路延时对比

    图  8  干净电路与木马电路线性拟合对比

    图  9  温度和电压校准设置

    图  10  不同温度和电压下检测到的木马数量

    算法1 LDA 算法
     输入:带标签的原始向量
     输出:矩阵积
      循环执行如下操作
      1. 计算数据集中不同类别的多维平均向量。
      2. 计算矩阵(类间和类内矩阵)。
      3. 计算矩阵的特征向量和相应的特征值。
      4. 对特征向量进行递减特征值排序,选择特征值最大的K个特
       征向量,形成D×K维矩阵W
      5. 使用这个 D×K 特征向量矩阵将模式转换到新的子空间。
      6. 对矩阵求积:Y=X×W(其中X是表示n个模式的n×D维矩
       阵,Y是新子空间中变换后的n×k维模式)。
     结束
    下载: 导出CSV
    算法2 线性回归算法
     输入:训练数据集和样本特征向量
     输出:计算多项式的值 y=w·xb
     对于每一个参数wb执行如下操作
      1. 前向传递:计算损失函数 L
      2. 向后传递:计算相对于 w 的梯度 G1的损失函数
      3. 根据G1更新参数
      4. 惩罚项:计算相对于w的梯度G2的损失函数
      5. 根据G2更新参数
     结束
    下载: 导出CSV

    表  1  测试台数据

    基准电路门数量电路面积(μm2)功率(W)
    AES10610163×1630.0732
    MIPS8661195×1950.0494
    RS Decoder23224394×3940.12
    JPEG Encoder2699701094×10941.4675
    下载: 导出CSV

    表  2  本文识别率与以往技术的比较(%)

    基准电路LTPD
    (μW/μm2)
    GNJ[16]BSC[17]LPA[18]ML[19]本文方法
    AES0.1488.0 2.02.22.73.0
    0.22326.519.115.416.3431.4
    0.27931.243.5 54.467.286.5
    0.36964.977.689.986.796.7
    0.44390.896.598.599.5100
    MIPS0.1545.68.011.719.732.5
    0.23110.816.523.339.560.6
    0.30817.726.040.162.681.8
    0.38427.639.458.277.891.1
    0.46339.355.973.788.592.4
    RS Decoder0.0623.74.84.37.59.8
    0.0923.74.84.37.59.8
    0.1224.87.39.113.421.2
    0.1566.19.312.522.236.2
    0.21810.112.820.938.157
    JPEG Encoder0.0041.52.02.03.13.2
    0.0153.37.57.88.08.0
    0.0264.510.511.113.015.0
    0.03710.315.520.621.225.8
    0.04811.118.530.345.650.1
    下载: 导出CSV
  • [1] AHMED A, FARAHMANDI F, ISKANDER Y, et al. Scalable hardware Trojan activation by interleaving concrete simulation and symbolic execution[C]. Proceedings of 2018 IEEE International Test Conference, Phoenix, USA, 2018: 1–10.
    [2] HAIDER S K, JIN Chenglu, AHMAD M, et al. Advancing the state-of-the-art in hardware Trojans detection[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 16(1): 18–32. doi: 10.1109/TDSC.2017.2654352
    [3] 明小满. 中国集成电路的发展现状与发展建议[J]. 通讯世界, 2017(4): 273–274. doi: 10.3969/j.issn.1006-4222.2017.04.200

    MING Xiaoman. The development status and development suggestions of China's integrated circuits[J]. Telecom World, 2017(4): 273–274. doi: 10.3969/j.issn.1006-4222.2017.04.200
    [4] ZHOU Bin, ZHANG Wei, THAMBIPILLAI S, et al. Cost-efficient acceleration of hardware Trojan detection through fan-out cone analysis and weighted random pattern technique[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(5): 792–805. doi: 10.1109/TCAD.2015.2460551
    [5] SONG Tai, NI Tianming, HUANG Zhengfeng, et al. Valid test pattern identification for VLSI adaptive test[J]. Integration, 2022, 82: 1–6. doi: 10.1016/j.vlsi.2021.08.009
    [6] CHAKRABORTY R S, NARASIMHAN S, and BHUNIA S. Hardware Trojan: Threats and emerging solutions[C]. Proceedings of 2009 IEEE International High Level Design Validation and Test Workshop, San Francisco, USA, 2009: 166–171.
    [7] SABRI M, SHABANI A, and ALIZADEH B. SAT-based integrated hardware Trojan detection and localization approach through path-delay analysis[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(8): 2850–2854. doi: 10.1109/TCSII.2021.3074549
    [8] 许强, 蒋兴浩, 姚立红, 等. 硬件木马检测与防范研究综述[J]. 网络与信息安全学报, 2017, 3(4): 1–13. doi: 10.11959/j.issn.2096-109x.2017.00160

    XU Qiang, JIANG Xinghao, YAO Lihong, et al. Overview of the detection and prevention study of hardware Trojans[J]. Chinese Journal of Network and Information Security, 2017, 3(4): 1–13. doi: 10.11959/j.issn.2096-109x.2017.00160
    [9] 尹勇生, 汪涛, 陈红梅, 等. 硬件木马技术研究进展[J]. 微电子学, 2017, 47(2): 233–238. doi: 10.13911/j.cnki.1004-3365.2017.02.021

    YIN Yongsheng, WANG Tao, CHEN Hongmei, et al. Study on hardware Trojan technology[J]. Microelectronics, 2017, 47(2): 233–238. doi: 10.13911/j.cnki.1004-3365.2017.02.021
    [10] 李莹, 陈岚, 佟鑫. 指令级功耗特征的硬件木马检测高效机器学习(英文)[J]. 中国科学院大学学报, 2021, 38(4): 494–502. doi: 10.7523/j.issn.2095-6134.2021.04.008

    LI Ying, CHEN Lan, and TONG Xin. Efficient machine learning methods for hardware Trojan detection using instruction-level power character[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(4): 494–502. doi: 10.7523/j.issn.2095-6134.2021.04.008
    [11] HU Wei, CHANG C H, SENGUPTA A, et al. An overview of hardware security and trust: Threats, countermeasures, and design tools[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(6): 1010–1038. doi: 10.1109/TCAD.2020.3047976
    [12] 倪林, 李少青, 马瑞聪, 等. 硬件木马检测与防护[J]. 数字通信, 2014, 41(1): 59–63,68. doi: 10.3969/j.issn.1005-3824.2014.01.016

    NI Lin, LI Shaoqing, MA Ruicong, et al. Hardware Trojans detection and protection[J]. Digital Communication, 2014, 41(1): 59–63,68. doi: 10.3969/j.issn.1005-3824.2014.01.016
    [13] 詹慕文. 基于衬底电流传感器的安全芯片防激光错误注入攻击研究[D]. [硕士论文], 湖北大学, 2021.

    ZHAN Muwen. Research on the security chip based on bulk current sensor against laser fault injection attack[D]. [Master dissertation], Hubei University, 2021.
    [14] 李雄伟, 徐璐, 张阳, 等. 面向硬件木马检测的旁路信号特征选择方法[J]. 计算机工程与应用, 2017, 53(21): 258–262. doi: 10.3778/j.issn.1002-8331.1605-0149

    LI Xiongwei, XU Lu, ZHANG Yang, et al. Side channel signals feature selection method oriented to hardware Trojan detection[J]. Computer Engineering and Applications, 2017, 53(21): 258–262. doi: 10.3778/j.issn.1002-8331.1605-0149
    [15] SHENDE R and AMBAWADE D D. A side channel based power analysis technique for hardware Trojan detection using statistical learning approach[C]. Proceedings of the 2016 13th International Conference on Wireless and Optical Communications Networks, Hyderabad, India, 2016: 1–4.
    [16] SALMANI H. Gradual-N-justification (GNJ) to reduce false-positive hardware Trojan detection in gate-level netlist[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(4): 515–525. doi: 10.1109/TVLSI.2022.3143349
    [17] NGUYEN L N, YILMAZ B B, PRVULOVIC M, et al. A novel golden-chip-free clustering technique using backscattering side channel for hardware Trojan detection[C]. Proceedings of 2020 IEEE International Symposium on Hardware Oriented Security and Trust, San Jose, USA, 2020: 1–12.
    [18] STERN A, MEHTA D, TAJIK S, et al. SPARTA: A laser probing approach for Trojan detection[C]. Proceedings of 2020 IEEE International Test Conference, Washington, USA, 2020: 1–10.
    [19] KURIHARA T, HASEGAWA K, and TOGAWA N. Evaluation on hardware-Trojan detection at gate-level IP cores utilizing machine learning methods[C]. Proceedings of the 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design, Napoli, Italy, 2020: 1–4.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  195
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回