高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

支持终端晃动的多光源可见光通信系统有效容量研究

钱磊 刘飞扬 赵琳琳 戈立军 迟学芬

钱磊, 刘飞扬, 赵琳琳, 戈立军, 迟学芬. 支持终端晃动的多光源可见光通信系统有效容量研究[J]. 电子与信息学报, 2022, 44(8): 2717-2724. doi: 10.11999/JEIT220366
引用本文: 钱磊, 刘飞扬, 赵琳琳, 戈立军, 迟学芬. 支持终端晃动的多光源可见光通信系统有效容量研究[J]. 电子与信息学报, 2022, 44(8): 2717-2724. doi: 10.11999/JEIT220366
QIAN Lei, LIU Feiyang, ZHAO Linlin, GE Lijun, CHI Xuefen. Research on Effective Capacity of Multi-Source Visible Light Communication Systems Supporting Terminal Rotation[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2717-2724. doi: 10.11999/JEIT220366
Citation: QIAN Lei, LIU Feiyang, ZHAO Linlin, GE Lijun, CHI Xuefen. Research on Effective Capacity of Multi-Source Visible Light Communication Systems Supporting Terminal Rotation[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2717-2724. doi: 10.11999/JEIT220366

支持终端晃动的多光源可见光通信系统有效容量研究

doi: 10.11999/JEIT220366
基金项目: 国家自然科学基金(61801191, 61302062),天津市自然科学基金(13JCQNJC00900),天津市多元投入基金(21JCQNJC00770),天津市光电传感器与传感网络技术重点实验室开放课题
详细信息
    作者简介:

    钱磊:女,1994年生,讲师,研究方向为可见光通信、QoS分析与保障、物理层安全

    刘飞扬:男,1999年生,硕士生,研究方向为可见光通信、机器学习

    赵琳琳:女,1985年生,副教授,研究方向为无线通信、QoS分析与保障

    戈立军:男,1984年生,教授,研究方向为无线通信、MIMO无线通信信号处理

    迟学芬:女,1962年生,教授,研究方向为可见光通信、无线通信、QoS分析与保障

    通讯作者:

    戈立军 gelj@mail.nankai.edu.cn

  • 中图分类号: TN929.1

Research on Effective Capacity of Multi-Source Visible Light Communication Systems Supporting Terminal Rotation

Funds: The National Natural Science Foundation of China (61801191, 61302062), The Natural Science Foundation of Tianjin in China (13JCQNJC00900), The Multiple Input Foundation of Tianjin in China (21JCQNJC00770), Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology
  • 摘要: 作为下一代网络的重点候选技术,可见光通信(VLC)以其超高的传输速率有望提供严格的时延服务质量(QoS)保障。现有VLC研究大多假设终端在接收信号过程中始终保持垂直向上。然而,在实际VLC系统中,终端晃动将对接收端入射角产生较大的影响,从而对VLC的信道增益与传输速率产生影响。该文针对统计时延QoS约束下多光源VLC系统晃动终端的可达传输速率展开研究。首先,基于3维离散时间马尔可夫链,提出VLC终端3自由度晃动模型,从时间相关性的角度刻画了VLC终端的随机晃动过程;其次,将终端晃动下多光源VLC系统的矢量传输过程映射为马尔可夫式服务过程,基于有效容量理论,研究支持终端晃动的VLC系统在统计时延QoS约束下的可达传输速率;最后,通过仿真实验说明了终端晃动对VLC系统容量的影响并验证了所推导有效容量的准确性。
  • 图  1  室内下行VLC系统

    图  2  3自由度终端晃动示意图

    图  3  3维离散时间马尔可夫链的状态转移情况

    图  4  3维离散时间马尔可夫链的状态空间

    图  5  终端晃动对多光源VLC系统容量的影响

    图  6  VLC系统有效容量的理论值与仿真值对比

    图  7  VLC系统有效容量随视场角变化

    表  1  VLC系统仿真参数

    参数符号取值单位
    LED半功率角$ {\phi _{1/2}} $70°
    接收端的FoV$ {\varphi _{\text{c}}} $90°
    光电检测器的物理面积A1cm2
    可用带宽B20MHz
    光电检测器的响应率$ \tau $0.54A/W
    噪声功率谱密度N010–21A2/Hz
    发送的光功率Pt20W
    终端和AP的垂直距离hd3m
    下载: 导出CSV
  • [1] 尤肖虎. Shannon信息论与未来6G技术潜能[J]. 中国科学:信息科学, 2020, 50(9): 1377–1394. doi: 10.1360/SSI-2020-0086

    YOU Xiaohu. Shannon theory and future 6G's technique potentials[J]. SCIENTIA SINICA Informationis, 2020, 50(9): 1377–1394. doi: 10.1360/SSI-2020-0086
    [2] IMT-2030(6G)推进组. 6G 网络架构愿景与关键技术展望白皮书[R]. 2021.

    IMT-2030(6G) Promotion Group. White paper of network architecture vision and key technology of 6G[R]. 2021.
    [3] ARFAOUI M A, SOLTANI M D, TAVAKKOLNIA I, et al. Invoking deep learning for joint estimation of indoor LiFi user position and orientation[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(9): 2890–2905. doi: 10.1109/JSAC.2021.3064637
    [4] SOLTANI M D, WU Xiping, SAFARI M, et al. Access point selection in Li-Fi cellular networks with arbitrary receiver orientation[C]. 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1–6.
    [5] EROĞLU Y S, YAPICI Y, GÜVENÇ I, et al. Impact of random receiver orientation on visible light communications channel[J]. IEEE Transactions on Communications, 2019, 67(2): 1313–1325. doi: 10.1109/TCOMM.2018.2879093
    [6] WANG Jinyuan, LI Qinglin, ZHU Jianxia, et al. Impact of receiver’s tilted angle on channel capacity in VLCs[J]. Electronics Letters, 2017, 53(6): 421–423. doi: 10.1049/el.2016.4657
    [7] WANG Jinyuan, WANG Junbo, ZHU Bingcheng, et al. Improvement of BER performance by tilting receiver plane for indoor visible light communications with input-dependent noise[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6.
    [8] SOLTANI M D, PURWITA A A, ZENG Zhihong, et al. Modeling the random orientation of mobile devices: Measurement, analysis and LiFi use case[J]. IEEE Transactions on Communications, 2019, 67(3): 2157–2172. doi: 10.1109/TCOMM.2018.2882213
    [9] SOLTANI M D, PURWITA A A, TAVAKKOLNIA I, et al. Impact of device orientation on error performance of LiFi systems[J]. IEEE Access, 2019, 7: 41690–41701. doi: 10.1109/ACCESS.2019.2907463
    [10] ABUMARSHOUD H, SOLTANI M D, SAFARI M, et al. Realistic secrecy performance analysis for LiFi systems[J]. IEEE Access, 2021, 9: 120675–120688. doi: 10.1109/ACCESS.2021.3108727
    [11] ARFAOUI M A, SOLTANI M D, TAVAKKOLNIA I, et al. Measurements-based channel models for indoor LiFi systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 827–842. doi: 10.1109/TWC.2020.3028456
    [12] YOO S K, COTTON S L, SOFOTASIOS P C, et al. Effective capacity analysis over generalized composite fading channels[J]. IEEE Access, 2020, 8: 123756–123764. doi: 10.1109/ACCESS.2020.3003207
    [13] WU Dapeng and NEGI R. Effective capacity: A wireless link model for support of quality of service[J]. IEEE Transactions on Wireless Communications, 2003, 2(4): 630–643. doi: 10.1109/TWC.2003.814353
    [14] JIN Fan, ZHANG Rong, and HANZO L. Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 1020–1034. doi: 10.1109/TWC.2014.2363451
    [15] HAMMOUDA M, AKIN S, VEGNI A M, et al. Link selection in hybrid RF/VLC systems under statistical queueing constraints[J]. IEEE transactions on Wireless Communications, 2018, 17(4): 2738–2754. doi: 10.1109/TWC.2018.2802937
    [16] LI Xuan, JIN Fan, ZHANG Rong, et al. Joint cluster formation and user association under delay guarantees in visible-light networks[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–6.
    [17] ZHAO Linlin, CHI Xuefen, and YANG Shaoshi. Optimal ALOHA-like random access with heterogeneous QoS guarantees for multi-packet reception aided visible light communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7872–7884. doi: 10.1109/TWC.2016.2608956
    [18] QIAN Lei, CHI Xuefen, ZHAO Linlin, et al. User-centric secure cell formation for visible light networks with statistical delay guarantees[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1831–1846. doi: 10.1109/TWC.2020.3036907
    [19] KOMINE T and NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100–107. doi: 10.1109/TCE.2004.1277847
    [20] CHANG Chengshang. Stability, queue length and delay. II. Stochastic queueing networks[C]. The 31st IEEE Conference on Decision and Control, Tucson, USA, 1992: 1005–1010.
    [21] KESIDIS G, WALRAND J, and CHANG Chengshang. Effective bandwidths for multiclass Markov fluids and other ATM sources[J]. IEEE/ACM Transactions on Networking, 1993, 1(4): 424–428. doi: 10.1109/90.251894
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  174
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-07-11
  • 录用日期:  2022-07-13
  • 网络出版日期:  2022-07-14
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回