高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优Bohman窗的改进S变换电能质量扰动特征精确快速提取方法

袁莉芬 张成林 尹柏强 李兵 佐磊

袁莉芬, 张成林, 尹柏强, 李兵, 佐磊. 基于最优Bohman窗的改进S变换电能质量扰动特征精确快速提取方法[J]. 电子与信息学报, 2022, 44(11): 3796-3805. doi: 10.11999/JEIT220344
引用本文: 袁莉芬, 张成林, 尹柏强, 李兵, 佐磊. 基于最优Bohman窗的改进S变换电能质量扰动特征精确快速提取方法[J]. 电子与信息学报, 2022, 44(11): 3796-3805. doi: 10.11999/JEIT220344
YUAN Lifen, ZHANG Chenglin, YIN Baiqiang, LI Bing, ZUO Lei. Accurate and Fast Feature Extraction Method of Power Quality Disturbances Based on Modified S-Transform of Optimal Bohman Window[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3796-3805. doi: 10.11999/JEIT220344
Citation: YUAN Lifen, ZHANG Chenglin, YIN Baiqiang, LI Bing, ZUO Lei. Accurate and Fast Feature Extraction Method of Power Quality Disturbances Based on Modified S-Transform of Optimal Bohman Window[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3796-3805. doi: 10.11999/JEIT220344

基于最优Bohman窗的改进S变换电能质量扰动特征精确快速提取方法

doi: 10.11999/JEIT220344
基金项目: 国家自然科学基金(61971175),中央高校基本科研业务费(JZ2019YYPY0025)
详细信息
    作者简介:

    袁莉芬:女,博士,教授,研究方向为射频识别技术

    张成林:男,硕士生,研究方向为电能质量检测

    尹柏强:男,博士,教授,研究方向为电能质量先进检测与控制方法

    李兵:男,博士,教授,研究方向为智能电网信息工程

    佐磊:男,博士,副研究员,研究方向为智能感知技术及应用

    通讯作者:

    尹柏强 yinbaiqiang123@163.com

  • 中图分类号: TM711; TN911.7

Accurate and Fast Feature Extraction Method of Power Quality Disturbances Based on Modified S-Transform of Optimal Bohman Window

Funds: The National Natural Science Foundation of China (61971175), The Fundamental Research Funds for the Central Universities (JZ2019YYPY0025)
  • 摘要: 针对传统S变换存在时频分辨率低且计算量大的问题,该文提出一种基于最优Bohman窗的改进S变换。该方法通过直接控制窗长获得最优时频分辨率,同时只针对主要频率点进行时频分析,实现对各类扰动信号特征的精确快速提取。首先根据所提评价标准确定最优长度参数;其次将采样信号进行快速傅里叶变换得到FFT频谱,再通过基于极大值包络的动态测度快速算法确定主要频率点;然后根据主要频率点所处频段选择对应最优长度参数进行计算处理;最后根据模时频矩阵计算时频幅值向量完成时频特征提取。仿真分析和实验结果表明,所提方法相较于传统S变换具有更高的时频分辨率和更短的计算时间,适用于电能质量扰动信号特征的精确快速提取。
  • 图  1  不同L值Bohman窗时频特性

    图  2  相同L值时Bohman窗和Gauss窗幅频特性

    图  3  L值对BST模向量的影响

    图  4  频谱极大值包络

    图  5  极大值包络的动态测度

    图  6  不同信号基频幅值曲线

    图  7  不同扰动时间下的相对幅值误差

    图  8  谐波和暂态振荡高频部分频率幅值曲线

    图  9  电压扰动Simulink模型

    图  10  不同算法下基频幅值曲线

    图  11  电流扰动Simulink模型

    图  12  A相电流频率幅值曲线

    图  13  电能质量扰动信号检测平台

    图  14  不同算法所需运算时间

    表  1  计算量和时间复杂度对比

    算法计算量时间复杂度
    复数加法复数乘法
    SMST$\dfrac{N}{2}(N{\log _2}N)$$\dfrac{N}{2}(N + \dfrac{N}{2}{\log _2}N)$$ O({N^2}{\log _{\text{2}}}N) $
    OST$\dfrac{N}{2}(N{\log _2}N)$$\dfrac{N}{2}(N + \dfrac{N}{2}{\log _2}N)$$ O({N^2}{\log _{\text{2}}}N) $
    FBST$ m(N{\log _{\text{2}}}N) $$\dfrac{m}{2}(N + \dfrac{N}{2}{\log _{\text{2} } }N)$$ O(N{\log _{\text{2}}}N) $
    下载: 导出CSV

    表  2  时域扰动计算时间对比(ms)

    扰动SMSTOSTFBST
    暂升27.629.57
    暂降23.829.78
    中断24.727.88
    闪变28.629.79
    下载: 导出CSV

    表  3  谐波与暂态振荡信号相对误差对比

    扰动幅值相对误差(×10–5)频率相对误差(Hz)
    SMSTOSTFBSTSMSTOSTFBST
    3次谐波000000
    5次谐波000000
    7次谐波000000
    9次谐波100000
    11次谐波1200000
    13次谐波3300000
    15次谐波150103.300
    17次谐波195106.700
    19次谐波3933000
    21次谐波337403.300
    23次谐波113216000
    25次谐波87116026.700
    27次谐波153734000
    29次谐波8532103.30
    暂态振荡98120101000
    下载: 导出CSV

    表  4  频域扰动计算时间对比(ms)

    扰动SMSTOSTFBST
    谐波信号24.62515
    暂态振荡24.7245
    下载: 导出CSV

    表  5  实测信号相对幅值误差(10–5)

    扰动SMSTOSTFBST
    C0暂升627028501230
    C1暂降502024401000
    C2中断1259060252529
    C3闪变371019701300
    C4谐波8412153100
    C5暂态振荡481543500
    C6暂升+谐波740041701790
    C7暂降+谐波895071004130
    C8中断+谐波225701780510464
    下载: 导出CSV
  • [1] 汪颖, 罗代军, 肖先勇, 等. 超高次谐波问题及其研究现状与趋势[J]. 电网技术, 2018, 42(2): 353–365. doi: 10.13335/j.1000-3673.pst.2017.2508

    WANG Ying, LUO Daijun, XIAO Xianyong, et al. Review and development tendency of research on 2~150 kHz supraharmonics[J]. Power System Technology, 2018, 42(2): 353–365. doi: 10.13335/j.1000-3673.pst.2017.2508
    [2] 尹柏强, 陈奇彬, 李兵, 等. 基于改进Kaiser窗快速S变换和LightGBM的电能质量扰动识别与分类新方法[J]. 中国电机工程学报, 2021, 41(24): 8372–8383. doi: 10.13334/j.0258-8013.pcsee.210743

    YIN Baiqiang, CHEN Qibin, LI Bing, et al. A new method for identification and classification of power quality disturbance based on modified kaiser window fast S-transform and LightGBM[J]. Proceedings of the CSEE, 2021, 41(24): 8372–8383. doi: 10.13334/j.0258-8013.pcsee.210743
    [3] 汪飞, 全晓庆, 任林涛. 电能质量扰动检测与识别方法研究综述[J]. 中国电机工程学报, 2021, 41(12): 4104–4120. doi: 10.13334/j.0258-8013.pcsee.201261

    WANG Fei, QUAN Xiaoqing, and REN Lintao. Review of power quality disturbance detection and identification methods[J]. Proceedings of the CSEE, 2021, 41(12): 4104–4120. doi: 10.13334/j.0258-8013.pcsee.201261
    [4] SINGH U and SINGH S N. Application of fractional Fourier transform for classification of power quality disturbances[J]. IET Science, Measurement & Technology, 2017, 11(1): 67–76. doi: 10.1049/iet-smt.2016.0194
    [5] 杨超, 张淮清, 王耀, 等. 计及全泄漏影响的多点插值离散傅里叶变换校正方法[J]. 电工技术学报, 2020, 35(16): 3385–3395. doi: 10.19595/j.cnki.1000-6753.tces.190883

    YANG Chao, ZHANG Huaiqing, WANG Yao, et al. Multipoint interpolated discrete Fourier transform correction method considering total leakage effect[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3385–3395. doi: 10.19595/j.cnki.1000-6753.tces.190883
    [6] SATPATHI K, YEAP Y M, UKIL A, et al. Short-time Fourier transform based transient analysis of VSC interfaced point-to-point DC System[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4080–4091. doi: 10.1109/TIE.2017.2758745
    [7] 朱茂桃, 吴新佳, 郑国峰, 等. 基于短时傅里叶变换的汽车零部件耐久性载荷信号编辑方法[J]. 机械工程学报, 2018, 55(4): 126–134. doi: 10.3901/JME.2019.04.126

    ZHU Maotao, WU Xinjia, ZHENG Guofeng, et al. Load signal edition method based on the short-time Fourier transform to durability test of vehicle component[J]. Journal of Mechanical Engineering, 2018, 55(4): 126–134. doi: 10.3901/JME.2019.04.126
    [8] 陈正颖, 王黎明, 怡勇. 基于短时傅里叶变换的直流电晕无线电干扰激发电流计算[J]. 高电压技术, 2019, 45(6): 1866–1872. doi: 10.13336/j.1003-6520.hve.20190604024

    CHEN Zhengying, WANG Liming, and YI Yong. Computation of radio interference excitation current of DC corona based on short-time fourier transform[J]. High Voltage Engineering, 2019, 45(6): 1866–1872. doi: 10.13336/j.1003-6520.hve.20190604024
    [9] 代荡荡, 王先培, 龙嘉川, 等. 基于改进Protrugram和小波变换的超高频局部放电信号去噪方法[J]. 高电压技术, 2018, 44(11): 3577–3586. doi: 10.13336/j.1003-6520.hve.20181031017

    DAI Dangdang, WANG Xianpei, LONG Jiachuan, et al. Denoising method of ultra-high frequency partial discharge signal based on improved protrugram and wavelet transform[J]. High Voltage Engineering, 2018, 44(11): 3577–3586. doi: 10.13336/j.1003-6520.hve.20181031017
    [10] THIRUMALA K, PAL S, JAIN T, et al. A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM[J]. Neurocomputing, 2019, 334: 265–274. doi: 10.1016/j.neucom.2019.01.038
    [11] 吴建章, 梅飞, 郑建勇, 等. 基于改进经验小波变换和XGBoost的电能质量复合扰动分类[J]. 电工技术学报, 2022, 37(1): 232–243,253. doi: 10.19595/j.cnki.1000-6753.tces.201363

    WU Jianzhang, MEI Fei, ZHENG Jianyong, et al. Recognition of multiple power quality disturbances based on modified empirical wavelet transform and XGBoost[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 232–243,253. doi: 10.19595/j.cnki.1000-6753.tces.201363
    [12] 尹柏强, 王署东, 何怡刚, 等. 基于快速S变换时频空间模型的电磁干扰复杂度评估方法[J]. 电子与信息学报, 2019, 41(1): 195–201. doi: 10.11999/JEIT180256

    YIN Baiqiang, WANG Shudong, HE Yigang, et al. Electromagnetic environment complex evaluation algorithm based on fast s-transform and time-frequency space model[J]. Journal of Electronics &Information Technology, 2019, 41(1): 195–201. doi: 10.11999/JEIT180256
    [13] 殷浩然, 苗世洪, 郭舒毓, 等. 基于S变换相关度和深度学习的配电网单相接地故障选线新方法[J]. 电力自动化设备, 2021, 41(7): 88–96. doi: 10.16081/j.epae.202105028

    YIN Haoran, MIAO Shihong, GUO Shuyu, et al. Novel method for single-phase grounding fault line selection in distribution network based on S-Transform correlation and deep learning[J]. Electric Power Automation Equipment, 2021, 41(7): 88–96. doi: 10.16081/j.epae.202105028
    [14] 刘宝稳, 汤容川, 马钲洲, 等. 基于S变换D-SVM AlexNet模型的GIS机械故障诊断与试验分析[J]. 高电压技术, 2021, 47(7): 2526–2535. doi: 10.13336/j.1003-6520.hve.20200224

    LIU Baowen, TANG Rongchuan, MA Zhengzhou, et al. GIS mechanical fault diagnosis and test analysis based on S-Transform D-SVM AlexNet model[J]. High Voltage Engineering, 2021, 47(7): 2526–2535. doi: 10.13336/j.1003-6520.hve.20200224
    [15] 尹柏强, 何怡刚, 朱彦卿. 一种广义S变换及模糊SOM网络的电能质量多扰动检测和识别方法[J]. 中国电机工程学报, 2015, 35(4): 866–872. doi: 10.13334/j.0258-8013.pcsee.2015.04.013

    YIN Baiqiang, HE Yigang, and ZHU Yanqing. Detection and classification of power quality multi-disturbances based on generalized S-Transform and fuzzy SOM neural network[J]. Proceedings of the CSEE, 2015, 35(4): 866–872. doi: 10.13334/j.0258-8013.pcsee.2015.04.013
    [16] 徐艳春, 高永康, 李振兴, 等. 基于VMD初始化S变换的混合动力系统电能质量扰动检测与分类[J]. 中国电机工程学报, 2019, 39(16): 4786–4798. doi: 10.13334/j.0258-8013.pcsee.181861

    XU Yanchun, GAO Yongkang, LI Zhenxing, et al. Power quality disturbance detection and classification of hybrid power system based on VMD initialization S-transform[J]. Proceedings of the CSEE, 2019, 39(16): 4786–4798. doi: 10.13334/j.0258-8013.pcsee.181861
    [17] 王仁明, 汪宏阳, 张赟宁, 等. 基于分段改进S变换和随机森林的复合电能质量扰动识别方法[J]. 电力系统保护与控制, 2020, 48(7): 19–28. doi: 10.19783/j.cnki.pspc.190569

    WANG Renming, WANG Hongyang, ZHANG Yunning, et al. Composite power quality disturbance recognition based on segmented modified S-Transform and random forest[J]. Power System Protection and Control, 2020, 48(7): 19–28. doi: 10.19783/j.cnki.pspc.190569
    [18] TANG Qiu, QIU Wei, and ZHOU Yicong. Classification of complex power quality disturbances using optimized S-transform and kernel SVM[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9715–9723. doi: 10.1109/TIE.2019.2952823
    [19] LIANG Chengbin, TENG Zhaosheng, LI Jianmin, et al. A Kaiser window-based S-Transform for time-frequency analysis of power quality signals[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 965–975. doi: 10.1109/TII.2021.3083240
    [20] 易吉良, 周曼, 李中启, 等. 采用不完全S变换的复杂谐波参数估计[J]. 电工技术学报, 2018, 33(S1): 112–120. doi: 10.19595/j.cnki.1000-6753.tces.180554

    YI Jiliang, ZHOU Man, LI Zhongqi, et al. Complex harmonic parameters estimation using incomplete S transform[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 112–120. doi: 10.19595/j.cnki.1000-6753.tces.180554
    [21] LI Jianmin, TENG Zhaosheng, TANG Qiu, et al. Detection and classification of power quality disturbances using double resolution S-transform and DAG-SVMs[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(10): 2302–2312. doi: 10.1109/TIM.2016.2578518
    [22] 易吉良, 彭建春, 谭会生. 采用不完全S变换的电能质量扰动检测方法[J]. 高电压技术, 2009, 35(10): 2562–2567. doi: 10.13336/j.1003-6520.hve.2009.10.024

    YI Jiliang, PENG Jianchun, and TAN Huisheng. Detection method of power quality disturbances using incomplete S-Transform[J]. High Voltage Engineering, 2009, 35(10): 2562–2567. doi: 10.13336/j.1003-6520.hve.2009.10.024
    [23] 刘应梅, 白晓民, 张红斌, 等. 基于动态测度的电能质量扰动检测[J]. 中国电机工程学报, 2003, 23(10): 57–62. doi: 10.3321/j.issn:0258-8013.2003.10.012

    LIU Yingmei, BAI Xiaomin, ZHANG Hongbin, et al. The detection of power quality disturbance based on dynamics[J]. Proceedings of the CSEE, 2003, 23(10): 57–62. doi: 10.3321/j.issn:0258-8013.2003.10.012
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  274
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-07-25
  • 录用日期:  2022-08-02
  • 网络出版日期:  2022-08-08
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回