高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于垂直结构GaN LED的水下蓝光通信系统

王永进 高羽 王林宁 高绪敏 胡泽锋

王永进, 高羽, 王林宁, 高绪敏, 胡泽锋. 基于垂直结构GaN LED的水下蓝光通信系统[J]. 电子与信息学报, 2022, 44(8): 2703-2709. doi: 10.11999/JEIT220328
引用本文: 王永进, 高羽, 王林宁, 高绪敏, 胡泽锋. 基于垂直结构GaN LED的水下蓝光通信系统[J]. 电子与信息学报, 2022, 44(8): 2703-2709. doi: 10.11999/JEIT220328
WANG Yongjin, GAO Yu, WANG Linning, GAO Xumin, HU Zefeng. Underwater Blue Light Communication UsingVertical-structure GaN Light Emitting Diode[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2703-2709. doi: 10.11999/JEIT220328
Citation: WANG Yongjin, GAO Yu, WANG Linning, GAO Xumin, HU Zefeng. Underwater Blue Light Communication UsingVertical-structure GaN Light Emitting Diode[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2703-2709. doi: 10.11999/JEIT220328

基于垂直结构GaN LED的水下蓝光通信系统

doi: 10.11999/JEIT220328
基金项目: 国家自然科学基金(61827804, 62005130),江苏省自然科学基金(BK20200755),“111”项目(D17018)
详细信息
    作者简介:

    王永进:男,1977年生,博士生导师,主要从事可见光通信系统及关键器件的研究

    高羽:男,1998年生,硕士生,主要研究方向为可见光通信及系统的技术研究

    王林宁:男,1995年生,博士生,主要研究方向为可见光通信及系统的技术研究

    高绪敏:女,1991年生,硕士生导师,主要研究方向为III 族氮化物光电材料与器件的研究

    胡泽锋:男,1998年生,硕士生,主要研究方向为可见光通信及系统的技术研究

    通讯作者:

    王永进 wangyj@njupt.edu.cn

  • 中图分类号: TN929.1; TN929.3

Underwater Blue Light Communication UsingVertical-structure GaN Light Emitting Diode

Funds: The National Natural Science Foundation of China (61827804, 62005130), The Natural Science Foundation of Jiangsu Province (BK20200755), The “111” Project (D17018)
  • 摘要: 垂直结构GaN LED能够提高器件的出光效率和调制带宽,是可见光通信的关键器件。该文面向水下蓝光通信的重大应用需求,基于亚波长理想LED模型,设计、制备了垂直结构蓝光LED器件,在NRZ-OOK调制下可实现10 Mbps的无线光通信。该文进一步搭建了水下可见光通信系统,采用基于该器件,实现了调制速率2 Mbps的全双工水下蓝光通信。
  • 图  1  GaN垂直结构LED制备

    图  2  GaN垂直结构LED器件表征

    图  3  GaN LED通信性能测试

    图  4  FPGA软件系统框图

    图  5  发射端电路和测试波形

    图  6  接收端电路和波形测试

    图  7  水下蓝光通信系统

    表  1  水下可见光通信技术数据

    光源类型探测器类型调制方式数据源数据速率(Mbps)传输方式距离(m)文献/年份
    LEDMPPCPAM4AWG12.8单工2文献[13]/2018
    LEDAPDPAM8AWG1500单工1.2文献[14]/2018
    LEDSIPMPPMAWG5单工46文献[15]/2019
    LEDSIPMOOKAWG1单工10文献[16]/2021
    LEDAPDOOK摄像头2双工0.8本文
    下载: 导出CSV
  • [1] TIAN Pengfei, LIU Xiaoyan, YI Suyu, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193–1201. doi: 10.1364/OE.25.001193
    [2] LU Zhijian, TIAN Pengfei, CHEN Hong, et al. Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK[J]. Optics Express, 2017, 25(15): 17971–17981. doi: 10.1364/OE.25.017971
    [3] ZOU Peng, ZHAO Yiheng, HU Fangchen, et al. Underwater visible light communication at 3.24 Gb/s using novel two-dimensional bit allocation[J]. Optics Express, 2020, 28(8): 11319–11338. doi: 10.1364/OE.390718
    [4] SHEN Chao, GUO Yujian, OUBEI H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502–25509. doi: 10.1364/OE.24.025502
    [5] LIU Xiaoyan, YI Suyu, ZHOU Xiaolin, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937–27947. doi: 10.1364/OE.25.027937
    [6] 王金龙, 高进, 吴振刚, 等. 基于商用蓝光LED的深海高速无线光通信系统[J]. 光通信技术, 2021, 45(11): 41–44. doi: 10.13921/j.cnki.issn1002-5561.2021.11.008

    WANG Jinlong, GAO Jin, WU Zhengang, et al. Deep sea high-speed wireless optical communication system based on commercial blue LED[J]. Optical Communication Technology, 2021, 45(11): 41–44. doi: 10.13921/j.cnki.issn1002-5561.2021.11.008
    [7] KANG C H, TRICHILI A, ALKHAZRAGI O, et al. Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication[J]. Optics Express, 2019, 27(21): 30450–30461. doi: 10.1364/OE.27.030450
    [8] KAUSHAL H and KADDOUM G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518–1547. doi: 10.1109/ACCESS.2016.2552538
    [9] 李丽. 基于蓝光LED的便携式水下视频通信系统[D]. [硕士论文], 南京邮电大学, 2014.

    LI Li. Underwater portable video communication system based on blue light LED[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2014.
    [10] HANSON F and RADIC S. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277–283. doi: 10.1364/AO.47.000277
    [11] WANG Jiemei, LU Chunhui, LI Shangbin, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171–12181. doi: 10.1364/OE.27.012171
    [12] 迟楠, 王超凡, 李韦萍, 等. 基于蓝绿光LED的水下可见光通信技术研究进展[J]. 复旦学报:自然科学版, 2019, 58(5): 537–548. doi: 10.15943/j.cnki.fdxb-jns.2019.05.001

    CHI Nan, WANG Chaofan, LI Weiping, et al. Research progress of underwater visible light communication technology based on blue-green LED[J]. Journal of Fudan University:Natural Science, 2019, 58(5): 537–548. doi: 10.15943/j.cnki.fdxb-jns.2019.05.001
    [13] KONG Meiwei, CHEN Yifei, SARWAR R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087–3097. doi: 10.1364/OE.26.003087
    [14] CHI Nan, ZHAO Yiheng, SHI Meng, et al. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system[J]. Optics Express, 2018, 26(20): 26700–26712. doi: 10.1364/OE.26.026700
    [15] SHEN Jiannan, WANG Jiongliang, YU Chuying, et al. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output[J]. Optics Communications, 2019, 438: 78–82. doi: 10.1016/j.optcom.2019.01.031
    [16] LI Jinjia, YE Demao, FU Kang, et al. Single-photon detection for MIMO underwater wireless optical communication enabled by arrayed LEDs and SiPMs[J]. Optics Express, 2021, 29(16): 25922–25944. doi: 10.1364/OE.433798
    [17] WANG Yongjin, WU Fan, WANG Xin, et al. GaN photonics: Simultaneous emission-detection phenomenon of multiple quantum well diode[J]. SPIE, 2018, 10823.
    [18] LI Zengcheng, LIU Legong, HUANG Yingnan, et al. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)[J]. Applied Physics Express, 2017, 10(7): 072101. doi: 10.7567/APEX.10.072101
    [19] 蒋成伟, 沙源清, 袁佳磊, 等. 电致发光的完全悬空超薄硅衬底氮化镓基蓝光LED器件的制备与表征[J]. 中国光学, 2021, 14(1): 153–162. doi: 10.37188/CO.2020-0148

    JIANG Chengwei, SHA Yuanqing, YUAN Jialei, et al. Fabrication and characterization of an LED based on a GaN-on-silicon platform with an ultra-thin freestanding membrane in the blue range[J]. Chinese Optics, 2021, 14(1): 153–162. doi: 10.37188/CO.2020-0148
    [20] WANG Yongjin, NI Shuyu, WANG Shuai, et al. A 225-nm-thick vertical-structure light-emitting diode inhibiting confined waveguide mode[J]. Applied Physics Express, 2019, 12(4): 046503. doi: 10.7567/1882-0786/ab0664
    [21] 金瑞雪. 面向可见光通信的GaN垂直结构光电器件研究[D]. [硕士论文], 南京邮电大学, 2021.

    JIN Ruixue. Research on GaN vertical structure optoelectronic devices for visible light communication[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2021.
    [22] 王永进, 章燕, 高绪敏, 等. 亚波长理想LED模型及实验实现[J]. 南京邮电大学学报: 自然科学版, 2019, 39(2): 1–5. doi: 10.14132/j.cnki.1673-5439.2019.02.001

    WANG Yongjin, ZHANG Yan, GAO Xumin, et al. Subwavelength perfect LED architecture and experimental realization[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition, 2019, 39(2): 1–5. doi: 10.14132/j.cnki.1673-5439.2019.02.001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  671
  • HTML全文浏览量:  688
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 修回日期:  2022-07-15
  • 网络出版日期:  2022-07-18
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回