高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向电力开关柜的轻量型GB-YOLOv5m状态检测方法

崔昊杨 杨可欣 葛海华 许永鹏 王浩然 杨程 戴莹莹

崔昊杨, 杨可欣, 葛海华, 许永鹏, 王浩然, 杨程, 戴莹莹. 面向电力开关柜的轻量型GB-YOLOv5m状态检测方法[J]. 电子与信息学报, 2022, 44(11): 3777-3787. doi: 10.11999/JEIT220288
引用本文: 崔昊杨, 杨可欣, 葛海华, 许永鹏, 王浩然, 杨程, 戴莹莹. 面向电力开关柜的轻量型GB-YOLOv5m状态检测方法[J]. 电子与信息学报, 2022, 44(11): 3777-3787. doi: 10.11999/JEIT220288
CUI Haoyang, YANG Kexin, GE Haihua, XU Yongpeng, WANG Haoran, YANG Cheng, DAI Yingying. Lightweight GB-YOLOv5m State Detection Method for Power Switchgear[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3777-3787. doi: 10.11999/JEIT220288
Citation: CUI Haoyang, YANG Kexin, GE Haihua, XU Yongpeng, WANG Haoran, YANG Cheng, DAI Yingying. Lightweight GB-YOLOv5m State Detection Method for Power Switchgear[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3777-3787. doi: 10.11999/JEIT220288

面向电力开关柜的轻量型GB-YOLOv5m状态检测方法

doi: 10.11999/JEIT220288
基金项目: 国家自然科学基金(52177185)
详细信息
    作者简介:

    崔昊杨:男,博士,教授,主要研究方向为电力设备状态检测

    杨可欣:女,硕士生,研究方向为电力设备图像处理

    葛海华:女,工程师,主要研究方向为蒸汽联合循环机组运行

    许永鹏:男,博士,助理研究员,主要研究方向为电力设备状态检测

    王浩然:男,硕士生,研究方向为光伏并网发电

    杨程:男,博士,讲师,主要研究方向为多媒体信号处理、机器学习

    通讯作者:

    崔昊杨 cuihy@shiep.edu.cn

  • 中图分类号: TM930.9; TN911.73

Lightweight GB-YOLOv5m State Detection Method for Power Switchgear

Funds: The National Natural Science Foundation of China (52177185)
  • 摘要: 电力开关柜状态灯及仪表具有布局高密、异位同像的特点,从而对边端图像处理技术中的目标形貌、色度对比等基础特征检测能力以及轻量识别能力提出更高要求,为此该文提出一种Ghost-BiFPN-YOLOv5m(GB-YOLOv5m)方法。采用加权双向特征金字塔(BiFPN)结构,赋予特征层不同权重以传递更多有效特征信息;增加一个检测层尺度,提升网络对于小目标的检测精度,解决状态灯高密布局引起的小目标识别难问题;利用Ghost-Bottleneck结构替换原主干网络的Bottleneck复杂结构,实现模型的轻量化,为在边端部署模型提供有利条件;通过图像增强技术对有限样本进行状态灯和仪表传递特征的扩充,并通过迁移学习实现算法高速收敛。经10 kV开关柜实测,结果表明该算法对柜体状态灯及仪表共16类目标识别准确率高,均值平均精度(mAP)达97.3%,fps为37.533帧;相较于YOLOv5m算法,在模型大小缩小了37.04%的基础上,mAP提升了10.2%,说明所提方法对灯体与表体的检测能力大幅提升,且轻量识别效率提升明显,对于开关柜电力状态的实时核验与数字孪生信息交互,具有一定的现实意义。
  • 图  1  YOLOv5m算法首次卷积所得部分特征图

    图  2  GB-YOLOv5m模型的网络结构示意图

    图  3  Ghost模块与常规卷积模块对比

    图  4  两个Ghost模块

    图  5  使用Ghost卷积后的特征图

    图  6  BiFPN特征融合单元

    图  7  优化方案与原YOLOv5m算法特征图对比

    图  8  实验场景及设备部署情况

    图  9  损失函数曲线对比图

    图  10  GB-YOLOv5m算法检测结果图

    图  11  不同角度下各对比算法所得检测结果图

    表  1  GB-YOLOv5m与其他算法对比结果

    序号算法P(%)R(%)mAP(%)Param(MB)fps
    1FasterR-CNN39.76044.69042.9125.5611.220
    2SSD30038.40537.63339.9999.7623.270
    3YOLOv4-Tiny43.60037.80043.605.9133.707
    4YOLOX82.32483.03384.4934.2114.633
    5DETR-DC528.62235.41129.1860.226.970
    6YOLOv5m88.90091.00087.1021.1143.243
    7GB-YOLOv5m88.90099.00097.3013.2937.553
    下载: 导出CSV

    表  2  GB-YOLOv5m与其他算法对不同尺度目标检测精度结果对比

    序号算法APs(%)APM(%)APL(%)
    1SSD30014.56040.40096.893
    2Faster R-CNN0.78493.98099.370
    3YOLOv4-Tiny2.62466.58398.728
    4YOLOX74.56098.98797.346
    5DETR-DC530.61128.94225.440
    6YOLOv5m77.60099.53399.225
    7GB-YOLOv5m95.82299.40099.200
    下载: 导出CSV

    表  3  基于YOLOv5m模型的消融实验

    序号实验组P (%)R (%)APs (%)APM (%)APL (%)mAP (%)Param (MB)fps
    1YOLOv5m88.99177.60099.53399.22587.121.1143.243
    2YOLOv5m+ Ghost88.99076.05699.53399.05086.211.2446.180
    3YOLOv5m+BiFPN90.89179.01099.40099.40087.923.6242.517
    4YOLOv5m+4层检测层88.59994.88099.46698.90096.723.1737.355
    5YOLOv5m+ Ghost+BiFPN89.89178.73399.43399.52587.812.8243.975
    6YOLOv5m+ Ghost+4层检测层88.19994.61199.43399.15096.612.0939.124
    7YOLOv5m+ BiFPN+4层检测层90.89996.20099.40099.27597.625.4936.364
    8YOLOv5m+Ghost+BiFPN +4层检测层(GB-YOLOv5m)88.99995.82299.40099.20097.313.2937.553
    下载: 导出CSV
  • [1] 张春晓, 陆志浩, 刘相财. 智慧变电站联合巡检技术及其应用[J]. 电力系统保护与控制, 2021, 49(9): 158–164. doi: 10.19783/j.cnki.pspc.201045

    ZHANG Chunxiao, LU Zhihao, and LIU Xiangcai. Joint inspection technology and its application in a smart substation[J]. Power System Protection and Control, 2021, 49(9): 158–164. doi: 10.19783/j.cnki.pspc.201045
    [2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [3] 杨观赐, 杨静, 苏志东, 等. 改进的YOLO特征提取算法及其在服务机器人隐私情境检测中的应用[J]. 自动化学报, 2018, 44(12): 2238–2249. doi: 10.16383/j.aas.2018.c170265

    YANG Guanci, YANG Jing, SU Zhidong, et al. An improved YOLO feature extraction algorithm and its application to privacy situation detection of social robots[J]. Acta Automatica Sinica, 2018, 44(12): 2238–2249. doi: 10.16383/j.aas.2018.c170265
    [4] GIRSHICK R. Fast R-CNN[C]. The IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440–1448.
    [5] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [6] REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018.
    [7] 鞠默然, 罗海波, 王仲博, 等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 0715004. doi: 10.3788/AOS201939.0715004

    JU Moran, LUO Haibo, WANG Zhongbo, et al. Improved YOLO V3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 2019, 39(7): 0715004. doi: 10.3788/AOS201939.0715004
    [8] BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934, 2020.
    [9] 谢昊源, 黄群星, 林晓青, 等. 基于图像深度学习的垃圾热值预测研究[J]. 化工学报, 2021, 72(5): 2773–2782. doi: 10.11949/0438-1157.20201481

    XIE Haoyuan, HUANG Qunxing, LIN Xiaoqing, et al. Study on the calorific value prediction of municipal solid wastes byimage deep learning[J]. CIESC Journal, 2021, 72(5): 2773–2782. doi: 10.11949/0438-1157.20201481
    [10] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 21–37.
    [11] 赵辉, 李志伟, 张天琪. 基于注意力机制的单发多框检测器算法[J]. 电子与信息学报, 2021, 43(7): 2096–2104. doi: 10.11999/JEIT200304

    ZHAO Hui, LI Zhiwei, and ZHANG Tianqi. Attention based single shot multibox detector[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2096–2104. doi: 10.11999/JEIT200304
    [12] 马鹏, 樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020, 44(3): 1148–1159. doi: 10.13335/j.1000-3673.pst.2018.2793

    MA Peng and FAN Yanfang. Small sample smart substation power equipment component detection based on deep transfer learning[J]. Power System Technology, 2020, 44(3): 1148–1159. doi: 10.13335/j.1000-3673.pst.2018.2793
    [13] 王永平, 张红民, 彭闯, 等. 基于YOLO v3的高压开关设备异常发热点目标检测方法[J]. 红外技术, 2020, 42(10): 983–987. doi: 10.3724/SP.J.7103116038

    WANG Yongping, ZHANG Hongmin, PENG Chuang, et al. The target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3[J]. Infrared Technology, 2020, 42(10): 983–987. doi: 10.3724/SP.J.7103116038
    [14] 华泽玺, 施会斌, 罗彦, 等. 基于轻量级YOLO-v4模型的变电站数字仪表检测识别[J/OL]. 西南交通大学学报, http://kns.cnki.net/kcms/detail/51.1277.U.20211027.1050.003.html, 2021.

    HUA Zexi, SHI Huibin, LUO Yan, et al. Detection and recognition of digital instruments based on lightweight YOLO-v4 model at substations[J/OL]. Journal of Southwest Jiaotong University, http://kns.cnki.net/kcms/detail/51.1277.U.20211027.1050.003.html, 2021.
    [15] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    [16] 刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3): 590–601. doi: 10.3969/j.issn.0372-2112.2020.03.024

    LIU Ying, LIU Hongyan, FAN Jiulun, et al. A survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(3): 590–601. doi: 10.3969/j.issn.0372-2112.2020.03.024
    [17] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    [18] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768.
    [19] GHIASI G, LIN T Y, and LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7029–7038.
    [20] 赵德安, 曹硕, 孙月平, 等. 基于联动扩展神经网络的水下自由活蟹检测器研究[J]. 农业机械学报, 2020, 51(9): 163–174. doi: 10.6041/j.issn.1000-1298.2020.09.019

    ZHAO Dean, CAO Shuo, SUN Yueping, et al. Small-sized efficient detector for underwater freely live crabs based on compound scaling neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 163–174. doi: 10.6041/j.issn.1000-1298.2020.09.019
    [21] SEKARA V, STOPCZYNSKI A, and LEHMANN S. Fundamental structures of dynamic social networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 9977. doi: 10.1073/pnas.1602803113
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  997
  • HTML全文浏览量:  436
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-07-06
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回