Partial Computation Offloading for Mobile Edge Computing in Space-Air-Ground Integrated Network
-
摘要: 空天地异构网络作为一种新型网络构架,是未来6G实现泛在连接的关键支撑。该文提出一种面向空天地异构网络(SAGIN)的移动边缘计算部分任务卸载方案。首先,分析了低轨(LEO)卫星的覆盖时间。其次,联合考虑用户与无人机(UAV)匹配关联因子、任务分配、带宽分配、无人机计算资源分配以及无人机轨迹,旨在建立一个能耗最小化问题。最后,采用交替迭代优化算法,将原非凸问题分解为3个子问题,并利用变量替换和连续凸逼近方法将问题转化为凸问题进行求解。仿真结果表明,所提算法具有良好的收敛性能,并有效地降低系统能耗。Abstract: As a new type of network architecture, Space-Air-Ground Integrated Network (SAGIN) is the key support for 6G to realize ubiquitous connection in the future. In this paper, a partial task offloading approach for Mobile Edge Computing (MEC) in SAGIN is proposed. Firstly, the coverage time of Low Earth Orbit (LEO) satellite is analyzed. Then, a non-convex and multivariable coupling problem for minimization of total energy consumption of all Unmanned Aerial Vehicles (UAVs) is formulated by the joint design of the association control, computation task allocation, bandwidth allocation, UAV computation resource, and UAV trajectory. To solve this problem, the alternation optimization technique is invoked to decouple the original non-convex problem into three subproblems which are solved by the successive convex approximation method. Numerical results demonstrate that the proposed algorithm has good convergence performance and reduces effectively the system energy consumption.
-
表 1 交替优化算法(算法1)
输入:初始化$ \left( {{\boldsymbol{a}},{\boldsymbol{b}},{\boldsymbol{D}},{\boldsymbol{f}},{\boldsymbol{q}}} \right) $ for $i = 1:I$ 步骤1:固定$\left\{ {{\boldsymbol{b}},{\boldsymbol{D}},{\boldsymbol{f}},{\boldsymbol{q}}} \right\}$时,求解线性规划问题; 步骤2:固定$ \left\{ {{\boldsymbol{a}},{\boldsymbol{f}},{\boldsymbol{q}}} \right\} $时,求解线性规划问题(10); 步骤3:固定$ \left\{ {{\boldsymbol{a}},{\boldsymbol{b}},{\boldsymbol{D}}} \right\} $时,求解凸优化问题; 输出$ \left( {{\boldsymbol{a}},{\boldsymbol{b}},{\boldsymbol{D}},{\boldsymbol{f}},{\boldsymbol{q}}} \right) $。 -
[1] LETAIEF K B, SHI Yuanming, LU Jianmin, et al. Edge artificial intelligence for 6G: Vision, enabling technologies, and applications[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 5–36. doi: 10.1109/JSAC.2021.3126076 [2] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics &Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789 [3] JI Baofeng, WANG Yanan, SONG Kang, et al. A survey of computational intelligence for 6G: Key technologies, applications and trends[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 7145–7154. doi: 10.1109/TII.2021.3052531 [4] LIU Jiajia, SHI Yongpeng, FADLULLAH Z M, et al. Space-air-ground integrated network: A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714–2741. doi: 10.1109/COMST.2018.2841996 [5] 唐清清, 李斌. 面向空天地一体化网络的移动边缘计算技术[J]. 无线电通信技术, 2021, 47(1): 25–35. doi: 10.3969/j.issn.1003-3114.2021.01.004TANG Qingqing and LI Bin. Overview of mobile edge computing in space-air-ground integrated network[J]. Radio Communications Technology, 2021, 47(1): 25–35. doi: 10.3969/j.issn.1003-3114.2021.01.004 [6] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896 [7] SHANG Bodong, YI Yang, and LIU Lingjia. Computing over space-air-ground integrated networks: Challenges and opportunities[J]. IEEE Network, 2021, 35(4): 302–309. doi: 10.1109/MNET.011.2000567 [8] 宋政育, 郝媛媛, 孙昕. 低轨卫星协作边缘计算任务迁移和资源分配算法[J]. 电子学报, 2022, 50(3): 567–573. doi: 10.12263/DZXB.20201249SONG Zhengyu, HAO Yuanyuan, and SUN Xin. Computation offloading and resource allocation algorithm for collaborative LEO satellite multi-access edge computing[J]. Acta Electronica Sinica, 2022, 50(3): 567–573. doi: 10.12263/DZXB.20201249 [9] 李安, 戴龙斌, 余礼苏, 等. 加权能耗最小化的无人机辅助移动边缘计算资源分配策略[J]. 电子与信息学报. 待发表.LI An, DAI Longbin, YU Lisu, et al. Resource allocation for unmanned aerial vehicle-assisted mobile edge computing to minimize weighted energy consumption[J]. Journal of Electronics & Information Technology. To be published. [10] 崔高峰, 徐媛媛, 张尚宏, 等. 基于最小能耗的多无人机无线网络安全数据卸载策略[J]. 通信学报, 2021, 42(5): 51–62.CUI Gaofeng, XU Yuanyuan, ZHANG Shanghong, et al. Secure data offloading strategy for multi-UAV wireless networks based on minimum energy consumption[J]. Journal on Communications, 2021, 42(5): 51–62. [11] XU Yu, ZHANG Tiankui, LIU Yuanwei, et al. UAV-assisted MEC networks with aerial and ground cooperation[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7712–7727. doi: 10.1109/TWC.2021.3086521 [12] SONG Zhengyu, HAO Yuanyuan, LIU Yuanwei, et al. Energy-efficient multiaccess edge computing for terrestrial-satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(18): 14202–14218. doi: 10.1109/JIOT.2021.3068141 [13] TANG Qingqing, FEI Zesong, LI Bin, et al. Computation offloading in LEO satellite networks with hybrid cloud and edge computing[J]. IEEE Internet of Things Journal, 2021, 8(11): 9164–9176. doi: 10.1109/JIOT.2021.3056569 [14] JIA Ziye, SHENG Min, LI Jiandong, et al. LEO-satellite-assisted UAV: Joint trajectory and data collection for internet of remote things in 6G aerial access networks[J]. IEEE Internet of Things Journal, 2021, 8(12): 9814–9826. doi: 10.1109/JIOT.2020.3021255 [15] WANG Ying, LI Zhendong, CHEN Yuanbin, et al. Joint resource allocation and UAV trajectory optimization for space–air–ground internet of remote things networks[J]. IEEE Systems Journal, 2021, 15(4): 4745–4755. doi: 10.1109/JSYST.2020.3019463 [16] CHENG Nan, LYU F, QUAN Wei, et al. Space/Aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789 [17] DING Changfeng, WANG Junbo, ZHANG Hua, et al. Joint optimization of transmission and computation resources for satellite and high altitude platform assisted edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1362–1377. doi: 10.1109/TWC.2021.3103764 [18] MAO Sun, HE Shunfan, and WU Jinsong. Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing[J]. IEEE Systems Journal, 2021, 15(3): 3992–4002. doi: 10.1109/JSYST.2020.3041706