Preliminary Process of Airborne Multidimensional Space Joint-observation SAR System
-
摘要: 随着合成孔径雷达(SAR)技术的发展,从极化、频率、角度和时相等多个维度空间联合观测成为SAR发展的重要趋势,但维度联合观测的系统与实验少有报道。该文概要介绍了机载多维度SAR(MSJosSAR)航空观测系统的能力,归纳总结了该系统的技术特点。提出多维度SAR一致性成像方法,实现多波段成像后的配准精度优于1个像元。分析了多波段极化角度特征谱、多方位角层析3维结构重建、多时相相干变化检测等3种SAR多维观测量的初步实验结果,验证了系统的多维观测能力。Abstract: With the development of Synthetic Aperture Radar (SAR) technology, Multidimensional Space Joint-observation, which includes polarimetry, frequency, angle, and time spaces, has become an important trend in SAR development, but there are few reports on systems and experiments about it. In this paper, the capabilities of the airborne Multidimensional Space Joint-observation SAR(MSJosSAR)system are briefly described and the technical characteristics of the system are summarized. A SAR consistently imaging algorithm is proposed and the registration accuracy of Multiband image is better than 1 pixel. The preliminary process of three multidimensional space joint-observations, including multi-band polarization angle feature quantity, multi-aspect tomography three-dimensional reconstruction, are analyzed, multitemporal coherence change detection, which verify the ability of multidimensional space joint-observation.
-
表 1 机载多维度SAR航空观测系统参数
类别 P L S C X Ka 工作模式 全极化、交轨干涉(C,Ka)、重轨干涉、圆迹 作业距离(km) 10~100 极化方式 全极化 PRF(Hz) 500 2000 1000 500 1000 5000 带宽(MHz) 200 200 300 300 500 900 分辨率(m) 1 1 1 0.5 0.5 0.3 表 2 一致性成像结果的配准精度
匹配图像 Ka-X X-C C-S S-L L-P 最大坐标差(像素) 0.85 0.66 0.94 0.58 0.50 -
[1] PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. Polarimetric 3-D reconstruction from multicircular SAR at P-band[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 803–807. doi: 10.1109/LGRS.2013.2279236 [2] MONTI-GUARNIERI A V, BROVELLI M A, MANZONI M, et al. Coherent change detection for multipass SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6811–6822. doi: 10.1109/TGRS.2018.2843560 [3] 冀广宇, 董勇伟, 李焱磊, 等. 一种基于概率图模型的多时相SAR相干变化检测方法[J]. 电子与信息学报, 2017, 39(12): 2912–2920. doi: 10.11999/JEIT170208JI Guangyu, DONG Yongwei, LI Yanlei, et al. A multi-temporal SAR coherent change detection method based on probabilistic graphical models[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2912–2920. doi: 10.11999/JEIT170208 [4] HENSLEY S, CHAPIN E, FREEDMAN A, et al. First P-band results using the GeoSAR mapping system[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 126–128. [5] KOBAYASHI T, UMEHARA T, UEMOTO J, et al. Evaluation of digital elevation model generated by an airborne interferometric SAR (Pi-SAR2)[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 378–381. [6] ZEBKER H A, MADSEN S N, MARTIN J, et al. The TOPSAR interferometric radar topographic mapping instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 933–940. doi: 10.1109/36.175328 [7] GRAY A L and FARRIS-MANNING P J. Repeat-pass interferometry with airborne synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 180–191. doi: 10.1109/36.210459 [8] DREUILLET P, CANTALLOUBE H, COLIN E, et al. The ONERA RAMSES SAR: Latest significant results and future developments[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 7. [9] DU PLESSIS O R, NOUVEL J F, BAQUÉ R, et al. ONERA SAR facilities[J]. IEEE Aerospace and Electronic Systems Magazine, 2011, 26(11): 24–30. doi: 10.1109/MAES.2011.6070278 [10] ROMBACH M and MOREIRA J. Description and applications of the multipolarized dual band OrbiSAR-1 InSAR sensor[C]. 2003 Proceedings of the International Conference on Radar, Adelaide, Australia, 2003: 245–250. [11] REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/JPROC.2012.2220511 [12] XIANG Maosheng, WU Yirong, LI Shaoen, et al. Introduction on an experimental airborne InSAR system[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05, Seoul, Korea, 2005: 4809–4812. [13] 黄国满. 机载多波段多极化干涉SAR测图系统—CASMSAR[J]. 测绘科学, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011HUANG Guoman. An airborne interferometric SAR mapping system with multi-band and multi-polarization-CASMSAR[J]. Science of Surveying and Mapping, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011 [14] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873 [15] BARBER J. A generalized likelihood ratio test for coherent change detection in polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1873–1877. doi: 10.1109/LGRS.2015.2433134 [16] WANG Zhongbin, WANG Bingnan, XIANG Maosheng, et al. A coherence improvement method based on sub-aperture InSAR for human activity detection[J]. Sensors, 2021, 21(4): 1424. doi: 10.3390/s21041424 [17] JUNG J, KIM D J, LAVALLE M, et al. Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5765–5775. doi: 10.1109/TGRS.2016.2572166 [18] REIGBER A, JÄGER M, and KROGAGER E. Polarimetric SAR change detection in multiple frequency bands for environmental monitoring in Arctic regions[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 5702–5705. [19] ZHANG Xiaojie, ZENG Qiming, JIAO Jian, et al. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 111: 32–44. doi: 10.1016/j.isprsjprs.2015.11.005 [20] SCHMITT M. Three-dimensional reconstruction of urban areas by multi-aspect TomoSAR data fusion[C]. 2015 Joint Urban Remote Sensing Event, Lausanne, Switzerland, 2015: 1–4. [21] SCHMITT M, SHAHZAD M, and ZHU Xiaoxiang. Reconstruction of individual trees from multi-aspect TomoSAR data[J]. Remote Sensing of Environment, 2015, 165: 175–185. doi: 10.1016/j.rse.2015.05.012 [22] PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6170–6196. doi: 10.1109/TGRS.2016.2582959 [23] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013 [24] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging——from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090 [25] 丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063 [26] 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047 [27] TENG Fei, LIN Yun, WANG Yanping, et al. An anisotropic scattering analysis method based on the statistical properties of multi-angular SAR images[J]. Remote Sensing, 2020, 12(13): 2152. doi: 10.3390/rs12132152 [28] HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. Efficient 3D image reconstruction of airborne TomoSAR based on back projection and improved adaptive ISTA[J]. IEEE Access, 2021, 9: 47399–47410. doi: 10.1109/ACCESS.2021.3066984 [29] HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. Panoramic 3D reconstruction method for SAR tomography based on multi-azimuth observations[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4798–4801. [30] WANG Zhongbin, WANG Yachao, WANG Bingnan, et al. Human activity detection based on multipass airborne InSAR coherence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4013905. doi: 10.1109/LGRS.2021.3077614