高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑工人培养的移动群智感知任务分配机制

吕翊 王燕 崔亚平 何鹏 吴大鹏 王汝言

吕翊, 王燕, 崔亚平, 何鹏, 吴大鹏, 王汝言. 考虑工人培养的移动群智感知任务分配机制[J]. 电子与信息学报, 2023, 45(4): 1505-1513. doi: 10.11999/JEIT220249
引用本文: 吕翊, 王燕, 崔亚平, 何鹏, 吴大鹏, 王汝言. 考虑工人培养的移动群智感知任务分配机制[J]. 电子与信息学报, 2023, 45(4): 1505-1513. doi: 10.11999/JEIT220249
LÜ Yi, WANG Yan, CUI Yaping, HE Peng, WU Dapeng, WANG Ruyan. Worker Development-Aware Task Allocation Strategy in Mobile Crowd Sensing[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1505-1513. doi: 10.11999/JEIT220249
Citation: LÜ Yi, WANG Yan, CUI Yaping, HE Peng, WU Dapeng, WANG Ruyan. Worker Development-Aware Task Allocation Strategy in Mobile Crowd Sensing[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1505-1513. doi: 10.11999/JEIT220249

考虑工人培养的移动群智感知任务分配机制

doi: 10.11999/JEIT220249
基金项目: 国家自然科学基金(61771082, 61801065, 61871062, 61901070, 62061007, U20A20157),重庆市教委科学技术研究项目(KJQN201900611, KJQN202000603),重庆市高校创新研究群体(CXQT20017),重庆市自然科学基金(cstc2020jcyj-zdxmX0024, cstc2021jcyj-msxmX0892)
详细信息
    作者简介:

    吕翊:男,教授,研究方向为下一代光网络理论与技术

    王燕:女,硕士生,研究方向为移动群智感知

    崔亚平:男,副教授,研究方向为车联网智能传输、边缘计算和缓存等

    何鹏:男,讲师,研究方向为移动边缘计算、分子通信、无线体域网等

    吴大鹏:男,教授,研究方向为泛在网络、互联网服务质量控制等

    王汝言:男,教授,研究方向为泛在网络、多媒体信息处理等

    通讯作者:

    崔亚平 cuiyp@cqupt.edu.cn

  • 中图分类号: TN929.5

Worker Development-Aware Task Allocation Strategy in Mobile Crowd Sensing

Funds: The National Natural Science Foundation of China (61771082, 61801065, 61871062, 61901070, 62061007, U20A20157), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201900611, KJQN202000603), The University Innovation Research Group of Chongqing (CXQT20017), The Natural Science Foundation of Chongqing (cstc2020jcyj-zdxmX0024, cstc2021jcyj-msxmX0892)
  • 摘要: 移动群智感知(MCS)通过大量感知工人的移动性和工人随身携带的感知设备来收集数据,是一种新的大规模数据感知范式。现有大量研究致力于解决移动群智感知中的任务分配问题,使感知数据质量得以提高,但忽略了缺乏优质工人的感知任务,导致任务完成质量降低。为了解决上述问题,对于缺乏优质工人的感知任务,该文关注将经验不足的工人培养为优质工人,并令其执行这些感知任务,实现工人的长期复用,提高感知数据质量和长期平台效用。具体来说,该文考虑了缺乏优质工人的感知任务所需的能力和工人的能力类型,并据此应用稳定匹配算法选择待培养工人,提出一种基于能力聚合和半马尔可夫预测的多阶段工人选择培养(MWSD)算法。结果表明,相比基于区块链的非确定团队协作(BNTC)算法,该文所提算法能够有效将缺乏优质工人的感知任务的数据质量提高24%,长期平台效用提高17%。
  • 图  1  系统模型图

    图  2  选择工人

    图  3  不同培养阶段的工人平均名誉值

    图  4  不同培养阶段的平台效用

    图  5  不同任务数量和培养阶段的平台效用

    图  6  不同培养阶段的平台成本

    图  7  不同培养阶段的长期平台效用

    图  8  不同任务数量和培养阶段的长期平台效用

    算法1 多阶段工人选择培养算法(MWSD)
     输入:待培养工人集合${W_{\rm{e}}}$,工人名誉阈值集合$K$;
     输出:优质工人集合${W_{\rm{s}}}$
     (1) ${W_s} \leftarrow \varnothing$
     (2) while ${g_r} \in \{ {g_1},{g_2}, \cdots ,{g_l}\} $ do
     (3)   ${W_{\rm{s}}} \leftarrow \varnothing$
         /* 当待培养工人集合不为空时 */
     (4)   while ${W_e} \ne \varnothing$ do
     (5)     ${w_b} \leftarrow \arg {\max _{ {w_i} \in {W_{\rm{e} } } } }({ { { {\rm{WU} }^r} } \mathord{\left/ {\vphantom { {W{U^r} } {Cos{t_r}({y_i},{h_{\mathbf{A} } }({\mathbf{C} }))} } } \right. } { { {\rm{Cost} }_r}({y_i},{h_{\mathbf{A} } }({\mathbf{C} }))} })$
           /* 若待培养工人的成本小于本阶段预算 */
     (6)     if $c({W_{\rm{s}}}) + c({w_b}) \le {B_r}$ then
     (7)       ${W_{\rm{s}}} \leftarrow {W_{\rm{s}}} \cup \{ {w_b}\}$
     (8)       ${W_{\rm{e}}} \leftarrow {W_{\rm{e}}}\backslash \{ {w_b}\}$
            /* 否则进入下一培养阶段的工人选择结束 */
     (9)      else then
     (10)       ${W_{\rm{e}}} \leftarrow {W_{\rm{s}}}$
     (11)       break
     (12)     end if
     (13)   end while
          /* 为任务请求者和工人定价 */
     (14)   for ${g_r}$中所有工人和任务请求者 do
     (15)     根据式(17)为任务请求者和工人定价
     (16)   end for
     (17) end while
     (18) return ${W_{\rm{s}}}$
    下载: 导出CSV

    表  1  仿真参数设置

    参数名称参数值
    任务数50
    工人数100
    名誉阈值0~1
    平台每阶段最大预算250
    工人最高成本10
    下载: 导出CSV
  • [1] CAPPONI A, FIANDRINO C, KANTARCI B, et al. A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2419–2465. doi: 10.1109/COMST.2019.2914030
    [2] LIU Yutong, KONG Linghe, and CHEN Guihai. Data-oriented mobile crowdsensing: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2849–2885. doi: 10.1109/COMST.2019.2910855
    [3] ARCAS-TUNEZ F and TERROSO-SAENZ F. Forest path condition monitoring based on crowd-based trajectory data analysis[J]. Journal of Ambient Intelligence and Smart Environments, 2021, 13(1): 37–54. doi: 10.3233/AIS-200586
    [4] AN Jian, WANG Zhenxing, HE Xin, et al. Know where you are: A practical privacy-preserving semi-supervised indoor positioning via edge-crowdsensing[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4875–4887. doi: 10.1109/TNSM.2021.3107718
    [5] JI Jianjiao, GUO Yinan, GONG Dunwei, et al. Evolutionary multi-task allocation for mobile crowdsensing with limited resource[J]. Swarm and Evolutionary Computation, 2021, 63: 100872. doi: 10.1016/j.swevo.2021.100872
    [6] WEI Xiaohui, LI Zijian, LIU Yuanyuan, et al. SDLSC-TA: Subarea division learning based task allocation in sparse mobile crowdsensing[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(3): 1344–1358. doi: 10.1109/TETC.2020.3045463
    [7] WANG Xiong, JIA Riheng, FU Luoyi, et al. Online spatial crowdsensing with expertise-aware truth inference and task allocation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 412–427. doi: 10.1109/JSAC.2021.3126045
    [8] JI Jianjiao, GUO Yinan, GAO Xiaozhi, et al. Q-learning-based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2211–2224. doi: 10.1109/TCYB.2021.3112675.
    [9] ZHANG Lichen, DING Yu, WANG Xiaoming, et al. Conflict-aware participant recruitment for mobile crowdsensing[J]. IEEE Transactions on Computational Social Systems, 2020, 7(1): 192–204. doi: 10.1109/TCSS.2019.2948957
    [10] NIE Jiangtian, LUO Jun, XIONG Zehui, et al. A multi-leader multi-follower game-based analysis for incentive mechanisms in socially-aware mobile crowdsensing[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1457–1471. doi: 10.1109/TWC.2020.3033822
    [11] GALE D and SHAPLEY L S. College admissions and the stability of marriage[J]. The American Mathematical Monthly, 1962, 69(1): 9–15. doi: 10.1080/00029890.1962.11989827
    [12] MO Kaixiang, ZHONG Erheng, and YANG Qiang. Cross-task crowdsourcing[C]. The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, 2013: 677–685.
    [13] GAO Xiaofeng, CHEN Shenwei, and CHEN Guihai. MAB-based reinforced worker selection framework for budgeted spatial crowdsensing[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(3): 1303–1316. doi: 10.1109/TKDE.2020.2992531
    [14] WANG Zhibo, ZHAO Jing, HU Jiahui, et al. Towards personalized task-oriented worker recruitment in mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2021, 20(5): 2080–2093. doi: 10.1109/TMC.2020.2973990
    [15] WANG En, YANG Yongjian, WU Jie, et al. User recruitment system for efficient photo collection in mobile crowdsensing[J]. IEEE Transactions on Human-Machine Systems, 2020, 50(1): 1–12. doi: 10.1109/THMS.2019.2912509
    [16] WANG Xin, LI Peng, and XIAO Junlei. Budget constraint task allocation for mobile crowd sensing with hybrid participant[C]. The 16th International Conference on Collaborative Computing: Networking, Applications and Worksharing, Shanghai, China, 2021: 506–517.
    [17] XIAO Liang, CHEN Tianhua, XIE Caixia, et al. Mobile crowdsensing games in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1535–1545. doi: 10.1109/TVT.2016.2647624
    [18] BAEK D, CHEN Jing, and CHOI B J. Small profits and quick returns: An incentive mechanism design for crowdsourcing under continuous platform competition[J]. IEEE Internet of Things Journal, 2020, 7(1): 349–362. doi: 10.1109/JIOT.2019.2953278
    [19] ZHANG Hao and SUGIYAMA M. Task selection for bandit-based task assignment in heterogeneous crowdsourcing[C]. 2015 Conference on Technologies and Applications of Artificial Intelligence (TAAI). Tainan, China, 2015: 164–171.
    [20] GAO Guoju, XIAO Mingjun, WU Jie, et al. Truthful incentive mechanism for nondeterministic crowdsensing with vehicles[J]. IEEE Transactions on Mobile Computing, 2018, 17(12): 2982–2997. doi: 10.1109/TMC.2018.2829506
    [21] WANG Jianrong, FENG Xinlei, XU Tianyi, et al. Blockchain-based model for nondeterministic crowdsensing strategy with vehicular team cooperation[J]. IEEE Internet of Things Journal, 2020, 7(9): 8090–8098. doi: 10.1109/JIOT.2020.3000048
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  800
  • HTML全文浏览量:  249
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-07-30
  • 录用日期:  2022-08-02
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回