高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G的用户为中心网络研究综述

施建锋 杨照辉 黄诺 陈晓 张玉洁 陈明

施建锋, 杨照辉, 黄诺, 陈晓, 张玉洁, 陈明. 面向6G的用户为中心网络研究综述[J]. 电子与信息学报, 2023, 45(5): 1873-1887. doi: 10.11999/JEIT220242
引用本文: 施建锋, 杨照辉, 黄诺, 陈晓, 张玉洁, 陈明. 面向6G的用户为中心网络研究综述[J]. 电子与信息学报, 2023, 45(5): 1873-1887. doi: 10.11999/JEIT220242
SHI Jianfeng, YANG Zhaohui, HUANG Nuo, CHEN Xiao, ZHANG Yujie, CHEN Ming. A Survey on User-centric Networks for 6G[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1873-1887. doi: 10.11999/JEIT220242
Citation: SHI Jianfeng, YANG Zhaohui, HUANG Nuo, CHEN Xiao, ZHANG Yujie, CHEN Ming. A Survey on User-centric Networks for 6G[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1873-1887. doi: 10.11999/JEIT220242

面向6G的用户为中心网络研究综述

doi: 10.11999/JEIT220242
基金项目: 江苏省自然科学基金(BK20210641),东南大学移动通信国家重点实验室开放研究基金(2021D11, 2022D10),江苏省高等学校自然科学研究项目(20KJB510037, 21KJB510031),南京信息工程大学人才启动项目(2020r009)
详细信息
    作者简介:

    施建锋:男,博士,讲师、研究生导师,研究方向为新一代移动通信网络、天地一体化网络、无线资源管理、凸优化理论等

    杨照辉:男,博士,博士后研究员,研究方向为无人机辅助通信、超可靠超低时延通信、边缘计算和非正交多址接入等

    黄诺:男,博士,副研究员,研究方向为无线光通信系统的传输设计和无线通信网络的资源分配等

    陈晓:女,博士,讲师,研究方向为大规模MIMO无线通信、基于机器学习的无线通信等

    张玉洁:女,硕士,讲师,研究方向为绿色能源、新能源电池和智能控制等

    陈明:男,博士,教授、博士生导师,研究方向为信号处理、无线资源管理等

    通讯作者:

    施建锋 jianfeng.shi@nuist.edu.cn

  • 中图分类号: TN929.5

A Survey on User-centric Networks for 6G

Funds: The Natural Science Foundation of Jiangsu Province of China (BK20210641), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2021D11, 2022D10), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB510037, 21KJB510031), The Startup Foundation for Introducing Talent of NUIST (2020r009)
  • 摘要: 与第5代移动通信网络(5G)相比,第6代移动通信网络(6G)有望引入新的性能指标和应用方案,如全球覆盖、更高的频谱/能源/成本效率、更高的智能和安全水平。用户为中心网络(UCN)将成为实现6G的关键推动者,因为其突破了传统基站为中心网络并与信息产业的新兴技术形成了有效融合。该文将从物理层的信道估计和预测、网络上层的性能分析以及链路层的无线资源管理等方面综述这一新型网络的研究现状。首先,讨论和分析UCN的概念和总体网络架构;其次,总结UCN网络中信道估计预测方法、性能分析策略和无线资源管理(RRM)方案;最后,在广泛的调研基础上,探讨UCN网络中的开放性问题,为今后的研究方向提供思路。此综述旨在使读者快速而全面地了解UCN的当前技术状况,从而吸引更多的研究人员进入这一领域。
  • 图  1  近几年全球移动数据量增长趋势[1]

    图  2  UCN网络示意图

    图  3  UCN中具有解耦特性的不同场景

    图  4  UCN各层次节点中资源配备示意图

    图  5  UCN中多维无线资源分配示意图

    图  6  物理层无线资源与网络上层资源示意图

    表  1  已有综述工作对比

    文献全面综述信道估计与预测性能分析无线资源管理贡献
    文献[8]××CRAN在工业界和学术界的全面综述:物理层和
    上层无线资源管理方面的关键技术。
    文献[9]×××CRAN体系架构、优势和挑战及其实现。
    本文UCN信道估计、性能分析和无线资源管理等方面的全面综述:
    已有工作总结和未来研究热点探讨。
    下载: 导出CSV

    表  2  缩略词

    缩写全拼含义
    3GPPthe Third-Generation Partnership Project第3代伙伴计划
    5Gthe Fifth Generation mobile network第5代移动通信网络
    6Gthe Sixth Generation mobile network第6代移动通信网络
    APAccess Point接入节点
    BCDBlock Coordinate Descent块坐标下降
    BINLPBinary Integer Non-Linear Programming二进制整数非线性优化
    CRANCloud Radio Access Network云接入网
    CSIChannel State Information信道状态信息
    CVSINRCluster Virtual Signal-to-Interference-plus-Noise Ratio群虚拟信干燥比
    DeDUDecoupled Downlink and Uplink上下行解耦
    MISOMultiple Input Single Output多输入单输出
    MIMOMultiple Input Multiple Output多输入多输出
    MINLPMixed-Integer Non-Linear Programming混合整型非线性优化
    SISOSingle Input Single Output单输入单输出
    TCNTraditional Cellular Network传统蜂窝网络
    UCNUser-Centric Network用户为中心网络
    UDNUltra-Dense Network超密集网络
    WMMSEWeighted Minimum Mean Square Error权重最小均方误差
    下载: 导出CSV

    表  3  UCN与TCN之间的对比

    对比内容网络
    TCNUCN
    部署范围较大范围室内/热点区域
    AP密度
    用户密度远高于AP密度与AP密度相仿
    覆盖特点异构,不规则形状单层,规则的蜂窝形状
    用户移动性
    速率中低
    前传链路理想的有线链路理想的有线链路/非理想的无线链路
    下载: 导出CSV

    表  4  信道估计与预测研究工作总结

    类别文献方法
    基于模型的传统估计预测文献[15,26]压缩感知
    文献[18,19,21]图论
    文献[16,17,20,25,27]优化理论(松弛、罚函数、BCD)
    基于人工智能的新型估计预测文献[23,24,30-35]深度神经网络(循环神经网络、卷积神经网络)
    文献[28,29,34,35]长短时记忆网络
    下载: 导出CSV

    表  5  性能分析研究工作总结

    性能指标类别场景文献方法
    概率类(覆盖概率、中断概率和
    用户接入概率等)
    SISO文献[36]随机几何
    SISO文献[37]级数逼近
    DeDU文献[48]随机几何
    容量类(中断容量、遍历容量和
    用户数据速率等)
    SISO文献[38-40]随机几何
    MIMO文献[44,45]分布逼近
    综合类(能效和切换率等)SISO文献[47]随机几何
    下载: 导出CSV

    表  6  无线资源管理研究工作总结

    类别资源种类文献方法
    单维资源管理功率资源文献[49-52]交替迭代、凸优化理论、深度Q学习网络
    计算资源文献[54,55]深度强化学习、合作博弈理论
    训练资源文献[53]图论
    2维资源管理子载波&功率文献[56,57]分支切割、交替迭代
    链路容量&计算文献[58]松弛近似、罚函数
    比特&计算文献[58,59]线性优化理论、循环神经网络
    波束方向&功率文献[60-62]松弛近似、深度Q学习网络
    3维资源管理子载波、功率&比特文献[63]交替迭代
    用户调度、子载波&功率文献[64,65]交替迭代、粒子群算法、松弛近似
    比特、波束方向&功率文献[66]深度学习神经网络
    AP集群、波束方向&功率文献[67-72]粒子群算法、凸优化理论、松弛近似、WMMSE、
    深度残差学习网络、深度神经网络
    导频、波束方向&功率文献[73]信号处理理论、松弛近似
    4维资源管理计算、存储、波束方向&功率文献[74]松弛近似、交替迭代
    AP集群、传输时隙、波束方向&功率文献[75]松弛近似、凸优化理论
    AP集群、前传链路压缩比、波束方向&功率文献[76]范数最小化、凸优化理论
    用户调度、AP集群、子载波&功率文献[77]交替迭代、协同优化理论
    下载: 导出CSV
  • [1] Cisco Visual Networking Index. Global mobile data traffic forecast update, 2017–2022[R]. White Paper, 2019.
    [2] FEHSKE A, FETTWEIS G, MALMODIN J, et al. The global footprint of mobile communications: The ecological and economic perspective[J]. IEEE Communications Magazine, 2011, 49(8): 55–62. doi: 10.1109/MCOM.2011.5978416
    [3] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [4] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798
    [5] XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040
    [6] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6
    [7] KASI S K, HASHMI U S, NABEEL M, et al. Analysis of area spectral & energy efficiency in a CoMP-enabled user-centric cloud RAN[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 1999–2015. doi: 10.1109/TGCN.2021.3093390
    [8] PENG Mugen, SUN Yaohua, LI Xuelong, et al. Recent advances in cloud radio access networks: System architectures, key techniques, and open issues[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2282–2308. doi: 10.1109/COMST.2016.2548658
    [9] CHECKO A, CHRISTIANSEN H L, YAN Ying, et al. Cloud RAN for mobile networks-A technology overview[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 405–426. doi: 10.1109/COMST.2014.2355255
    [10] BOCCARDI F, HEANTH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi: 10.1109/MCOM.2014.6736746
    [11] 3GPP Technical Specification 36.401–2020. Evolved Universal Terrestrial Radio Access Network (E-UTRAN): Architecture description[TS]. (Release 16), 2020.
    [12] BOCCARDI F, ANDREWS J, ELSHAER H, et al. Why to decouple the uplink and downlink in cellular networks and how to do it[J]. IEEE Communications Magazine, 2016, 54(3): 110–117. doi: 10.1109/MCOM.2016.7432156
    [13] SHARMA T, CHEHRI A, and FORTIER P. Review of optical and wireless backhaul networks and emerging trends of next generation 5G and 6G technologies[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(2): e4155. doi: 10.1002/ett.4155
    [14] TEZERGIL B and ONUR E. Wireless backhaul in 5G and beyond: Issues, challenges and opportunities[J]. arXiv preprint arXiv: 2103.08234, 2021.
    [15] XU Xiao, RAO Xiongbin, and LAU V K N. Active user detection and channel estimation in uplink CRAN systems[C]. 2015 IEEE International Conference on Communications (ICC), London, UK, 2015: 2727–2732.
    [16] HE Qi, QUEK T Q S, CHEN Zhi, et al. . Compressive channel estimation and multi-user detection in C-RAN[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6.
    [17] HE Qi, QUEK T Q S, CHEN Zhi, et al. Compressive channel estimation and multi-user detection in C-RAN with low-complexity methods[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3931–3944. doi: 10.1109/TWC.2018.2818125
    [18] ZHANG Jianwen, YUAN Xiaojun, and ZHANG Yingjun. Locally orthogonal training design in cloud-RANs[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–6.
    [19] ZHANG Jianwen, YUAN Xiaojun, and ZHANG Yingjun. Locally orthogonal training design for cloud-RANs based on graph coloring[J]. IEEE Transactions on Wireless Communications, 2017, 16(10): 6426–6437. doi: 10.1109/TWC.2017.2723471
    [20] STEPHEN R G and ZHANG Rui. Uplink channel estimation and data transmission in millimeter-wave CRAN with lens antenna arrays[J]. IEEE Transactions on Communications, 2018, 66(12): 6542–6555. doi: 10.1109/TCOMM.2018.2859996
    [21] WANG Jingchao, YI Jie, HAN Rui, et al. Variational Bayesian inference for channel estimation and user activity detection in C-RAN[J]. IEEE Wireless Communications Letters, 2020, 9(7): 953–956. doi: 10.1109/LWC.2020.2975785
    [22] LIU Xuan, SHI Yuanming, ZHANG Jun, et al. Massive CSI acquisition for dense cloud-RANs with spatial-temporal dynamics[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2557–2570. doi: 10.1109/TWC.2018.2797969
    [23] YANG Yuwen, GAO Feifei, MA Xiaoli, et al. Deep learning-based channel estimation for doubly selective fading channels[J]. IEEE Access, 2019: 36579–36589. doi: 10.1109/ACCESS.2019.2901066
    [24] BAI Qinbo, WANG Jintao, ZHANG Yue, et al. Deep learning-based channel estimation algorithm over time selective fading channels[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 125–134. doi: 10.1109/TCCN.2019.2943455
    [25] XU Zhinan, HOFER M, and ZEMEN T. A time-variant channel prediction and feedback framework for interference alignment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 5961–5973. doi: 10.1109/TVT.2017.2647880
    [26] UEHASHI S, OGAWA Y, NISHIMURA T, et al. Prediction of time-varying multi-user MIMO channels based on DOA estimation using compressed sensing[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 565–577. doi: 10.1109/TVT.2018.2882214
    [27] CAREEM M A A and DUTTA A. Real-time prediction of non-stationary wireless channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 7836–7850. doi: 10.1109/TWC.2020.3016962
    [28] HERATH J D, SEETHARAM A, and RAMESH A. A deep learning model for wireless channel quality prediction[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
    [29] JIANG Wei and SCHOTTEN H D. Recurrent neural networks with long short-term memory for fading channel prediction[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–5.
    [30] JIANG Wei and SCHOTTEN H D. Neural network-based fading channel prediction: A comprehensive overview[J]. IEEE Access, 2019, 7: 118112–118124. doi: 10.1109/ACCESS.2019.2937588
    [31] JIANG Wei, STRUFE M, and SCHOTTEN H D. Long-range MIMO channel prediction using recurrent neural networks[C]. 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, USA, 2020: 1–6. doi: CCNC46108.2020.9045219.
    [32] JIANG Wei and SCHOTTEN H D. A deep learning method to predict fading channel in multi-antenna systems[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–5.
    [33] JIANG Wei and SCHOTTEN H D. Deep learning for fading channel prediction[J]. IEEE Open Journal of the Communications Society, 2020, 1: 320–332. doi: 10.1109/OJCOMS.2020.2982513
    [34] LUO Changqing, JI Jinlong, WANG Qianlong, et al. Channel state information prediction for 5G wireless communications: A deep learning approach[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 227–236. doi: 10.1109/TNSE.2018.2848960
    [35] EOM C and LEE C. Hybrid neural network-based fading channel prediction for link adaptation[J]. IEEE Access, 2021, 9: 117257–117266. doi: 10.1109/ACCESS.2021.3106739
    [36] CHEN Ying and ZHANG Hongtao. Outage probability and average rate analysis of user-centric ultra-dense networks[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
    [37] ABBAS Z H, ULLAH A, ABBAS G, et al. Outage probability analysis of user-centric SBS-based HCNets under hybrid rician/rayleigh fading[J]. IEEE Communications Letters, 2020, 24(2): 297–301. doi: 10.1109/LCOMM.2019.2959578
    [38] YANG Zheng, DING Zhiguo, and FAN Pingzhi. Performance analysis of cloud radio access networks with uniformly distributed base stations[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 472–477. doi: 10.1109/TVT.2015.2394458
    [39] ZHANG Yingxiao and ZHANG Yingjun. User-centric virtual cell design for cloud radio access networks[C]. 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Toronto, Canada, 2014: 249–253.
    [40] LIN Yicheng and YU Wei. Ergodic capacity analysis of downlink distributed antenna systems using stochastic geometry[C]. 2013 IEEE International Conference on Communications, Budapest, Hungary, 2013: 3338–3343.
    [41] ZHAO Zhongyuan, PENG Mugen, DING Zhiguo, et al. Cluster formation in cloud-radio access networks: Performance analysis and algorithms design[C]. 2015 IEEE International Conference on Communications (ICC), London, UK, 2015: 3903–3908.
    [42] HUMADI K, TRIGUI I, ZHU Weiping, et al. Coverage analysis of user-centric dense terahertz networks[J]. IEEE Communications Letters, 2021, 25(9): 2864–2868. doi: 10.1109/LCOMM.2021.3091596
    [43] KHAN F A, HE Huasen, XUE Jiang, et al. Performance analysis of cloud radio access networks with distributed multiple antenna remote radio heads[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4784–4799. doi: 10.1109/TSP.2015.2446440
    [44] PENG Mugen, YAN Shi, and POOR H V. Ergodic capacity analysis of remote radio head associations in cloud radio access networks[J]. IEEE Wireless Communications Letters, 2014, 3(4): 365–368. doi: 10.1109/LWC.2014.2317476
    [45] ZHU Caiyi and YU Wei. Stochastic modeling and analysis of user-centric network MIMO systems[J]. IEEE Transactions on Communications, 2018, 66(12): 6176–6189. doi: 10.1109/TCOMM.2018.2867458
    [46] MO Yijun, XIE Juan, and HUANG Benxiong. Handoff in virtual cell system based on distributed antenna[C]. 2006 International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 2006: 1–4.
    [47] BAO Wei and LIANG Ben. Optimizing cluster size through handoff analysis in user-centric cooperative wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(2): 766–778. doi: 10.1109/TWC.2017.2771343
    [48] ULLAH A, ABBAS Z H, MUHAMMAD F, et al. Uplink performance analysis of user-centric small cell aided dense HCNets with uplink-downlink decoupling[J]. IEEE Access, 2020, 8: 148460–148474. doi: 10.1109/ACCESS.2020.3015915
    [49] ALONZO M, BUZZI S, ZAPPONE A, et al. Energy-efficient power control in cell-free and user-centric massive MIMO at millimeter wave[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(3): 651–663. doi: 10.1109/TGCN.2019.2908228
    [50] MAKHANBET M and LV T. User-centric online learning of power allocation in H-CRAN[C]. 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 2019: 1–6.
    [51] IQBAL A, THAM M L, and CHANG Y C. Double deep Q-network for power allocation in cloud radio access network[C]. 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 2020: 272–277.
    [52] IQBAL A, THAM M L, and CHANG Y C. Double deep Q-network-based energy-efficient resource allocation in cloud radio access network[J]. IEEE Access, 2021, 9: 20440–20449. doi: 10.1109/ACCESS.2021.3054909
    [53] SINGH R, SALUJA D, and KUMAR S. Graph based training resource allocation scheme for CoMP transmission in CRAN: A low complexity solution[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(3): 2402–2411. doi: 10.1109/TNSE.2021.3093311
    [54] RODOSHI R T, KIM T, and CHOI W. Deep reinforcement learning based dynamic resource allocation in cloud radio access networks[C]. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2020: 618–623.
    [55] BARAHMAN M, CORREIA L M, and FERREIRA L S. An efficient QoS-aware computational resource allocation scheme in C-RAN[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6.
    [56] MOOSAVI N, SINAIE M, AZMI P, et al. Delay aware resource allocation with radio remote head cooperation in user-centric C-RAN[J]. IEEE Communications Letters, 2021, 25(7): 2343–2347. doi: 10.1109/LCOMM.2021.3069235
    [57] HE Chunlong, LI G Y, ZHENG Fuchun, et al. Energy-efficient resource allocation in OFDM systems with distributed antennas[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1223–1231. doi: 10.1109/TVT.2013.2282373
    [58] SHARARA M, HOTEIT S, BROWN P, et al. Coordination between radio and computing schedulers in Cloud-RAN[C]. IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 2021: 37–44.
    [59] SHARARA M, HOTEIT S, and VÈQUE V. A recurrent neural network based approach for coordinating radio and computing resources allocation in Cloud-RAN[C]. 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Paris, France, 2021: 1–7.
    [60] KADAN F E and YILMAZ A Ö. Beamformer design with smooth constraint-free approximation in downlink cloud radio access networks[J]. IEEE Access, 2021, 9: 36399–36416. doi: 10.1109/ACCESS.2021.3063668
    [61] TAN Fangqing, WU Peiran, WU Y C, et al. Cooperative beamforming for wireless fronthaul and access links in ultra-dense C-RANs with SWIPT: A first-order approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(5): 1242–1257. doi: 10.1109/JSTSP.2021.3086982
    [62] LUO Yifan, YANG Jiawei, XU Wei, et al. Power consumption optimization using gradient boosting aided deep Q-network in C-RANs[J]. IEEE Access, 2020, 8: 46811–46823. doi: 10.1109/ACCESS.2020.2978935
    [63] ZHU Huiling and WANG Jiangzhou. Radio resource allocation in multiuser distributed antenna systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(10): 2058–2066. doi: 10.1109/JSAC.2013.131008
    [64] ZHANG Guobin, KE Feng, ZHANG Haijun, et al. User access and resource allocation in full-duplex user-centric ultra-dense networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12015–12030. doi: 10.1109/TVT.2020.3010364
    [65] ZHANG Long, ZHANG Guobin, ZHAO Xiaofang, et al. Energy efficient resource optimization in user-centric UDNs with NOMA and beamforming[C]. 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 2020: 115–121.
    [66] YU D, LEE H, PARK S H, et al. Deep learning methods for joint optimization of beamforming and fronthaul quantization in cloud radio access networks[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2180–2184. doi: 10.1109/LWC.2021.3095500
    [67] SHI Jianfeng, XU Hao, YANG Zhaohui, et al. Energy efficient beamforming for user-centric virtual cell networks[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(3): 575–590. doi: 10.1109/TGCN.2019.2910827
    [68] ZHAO Mingmin, CAI Yunlong, ZHAO Minjian, et al. Improving caching efficiency in content-aware C-RAN-based cooperative beamforming: A joint design approach[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 4125–4140. doi: 10.1109/TWC.2020.2979958
    [69] ZHAO Mingmin, CAI Yunlong, ZHAO Minjian, et al. Joint content placement, RRH clustering and beamforming for cache-enabled Cloud-RAN[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
    [70] ZHOU Yanglin, CI Song, and YANG Yang. Energy-aware joint clustering and scheduling for multicast beamforming in Cloud-RAN downlink[J]. IEEE Wireless Communications Letters, 2020, 9(4): 461–464. doi: 10.1109/LWC.2019.2958929
    [71] HE Yuan, DAI Lingcheng, and ZHANG Hongtao. Multi-branch deep residual learning for clustering and beamforming in user-centric network[J]. IEEE Communications Letters, 2020, 24(10): 2221–2225. doi: 10.1109/LCOMM.2020.3005947
    [72] DU Gehui, WANG Luhan, LIAO Qing, et al. Deep neural network based cell sleeping control and beamforming optimization in Cloud-RAN[C]. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, USA, 2019: 1–5.
    [73] PAN Cunhua, REN Hong, ELKASHLAN M, et al. Robust beamforming design for ultra-dense user-centric C-RAN in the face of realistic pilot contamination and limited feedback[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 780–795. doi: 10.1109/TWC.2018.2882442
    [74] TANG Jianhua, QUEK T Q S, CHANG T H, et al. Systematic resource allocation in cloud RAN with caching as a service under two timescales[J]. IEEE Transactions on Communications, 2019, 67(11): 7755–7770. doi: 10.1109/TCOMM.2019.2934854
    [75] SHI Jianfeng, CHEN Xiao, HUANG Nuo, et al. Power-efficient transmission for user-centric networks with limited fronthaul capacity and computation resource[J]. IEEE Transactions on Communications, 2020, 68(9): 5649–5660. doi: 10.1109/TCOMM.2020.3002942
    [76] TANG Weijun and FENG Suili. User selection and power minimization in full-duplex cloud radio access networks[J]. IEEE Transactions on Signal Processing, 2019, 67(9): 2426–2438. doi: 10.1109/TSP.2019.2905804
    [77] LI Nan, YAO Zhenjie, TU Yanhui, et al. Cooperative optimization for OFDMA resource allocation in multi-RRH millimeter-wave CRAN[J]. IEEE Access, 2021, 8: 164035–164044. doi: 10.1109/ACCESS.2020.3022363
    [78] RODOSHI R T, KIM T, and CHOI W. Resource management in cloud radio access network: Conventional and new approaches[J]. Sensors, 2020, 20(9): 2708. doi: 10.3390/s20092708
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  1205
  • HTML全文浏览量:  857
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-05-23
  • 网络出版日期:  2022-06-01
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回