高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低秩汉克尔矩阵重构技术的星载间断调频连续波SAR成像方法

闵林 刘向前 郝晓龙 郭拯危 李宁

闵林, 刘向前, 郝晓龙, 郭拯危, 李宁. 基于低秩汉克尔矩阵重构技术的星载间断调频连续波SAR成像方法[J]. 电子与信息学报, 2023, 45(4): 1285-1292. doi: 10.11999/JEIT220239
引用本文: 闵林, 刘向前, 郝晓龙, 郭拯危, 李宁. 基于低秩汉克尔矩阵重构技术的星载间断调频连续波SAR成像方法[J]. 电子与信息学报, 2023, 45(4): 1285-1292. doi: 10.11999/JEIT220239
MIN Lin, LIU Xiangqian, HAO Xiaolong, GUO Zhengwei, LI Ning. Spaceborne Interrupted Frequency Modulate Continuous Wave SAR Imaging Based on Low-Rank Hankel Matrix Reconstruction Technique[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1285-1292. doi: 10.11999/JEIT220239
Citation: MIN Lin, LIU Xiangqian, HAO Xiaolong, GUO Zhengwei, LI Ning. Spaceborne Interrupted Frequency Modulate Continuous Wave SAR Imaging Based on Low-Rank Hankel Matrix Reconstruction Technique[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1285-1292. doi: 10.11999/JEIT220239

基于低秩汉克尔矩阵重构技术的星载间断调频连续波SAR成像方法

doi: 10.11999/JEIT220239
基金项目: 国家自然科学基金(61871175),河南省自然科学基金(222300420115)
详细信息
    作者简介:

    闵林:男,教授,研究方向为SAR图像与信号处理

    刘向前:男,硕士生,研究方向为SAR成像技术

    郝晓龙:男,助理研究员, 研究方向为卫星遥感技术

    郭拯危:女,教授,研究方向为SAR图像信息处理和生态环境SAR遥感应用

    李宁:男,教授,研究方向为多模式合成孔径雷达成像及其应用技术

    通讯作者:

    李宁 hedalining@henu.edu.cn

  • 中图分类号: TN957.52

Spaceborne Interrupted Frequency Modulate Continuous Wave SAR Imaging Based on Low-Rank Hankel Matrix Reconstruction Technique

Funds: The National Natural Science Foundation of China (61871175), The Natural Science Foundation of Henan Province (222300420115)
  • 摘要: 间断调频连续波(IFMCW)合成孔径雷达(SAR)是一种新型的集轻量化、低成本和低功耗于一体的新型SAR系统。该系统采用单根天线发射和接收信号,颠覆了传统的调频连续波(FMCW) SAR系统设计理念。在该模式下,由于发射机工作时接收机关闭,导致合成孔径中出现周期性的间隔,采用传统成像算法进行成像,在聚焦SAR图像中将会出现周期性的虚假目标。为了有效地抑制虚假目标,该文基于子孔径回波数据,提出一种新的成像算法,即基于子孔径投影的低秩汉克尔矩阵重构技术(LHRTSP)。实验结果表明与现有方法相比,所提方法对虚假目标的抑制效果更佳,验证了所提方法的有效性。
  • 图  1  星载IFMCW SAR正侧视条带成像几何关系图

    图  2  回波数据形式

    图  3  本文所提LHRTSP方法主要流程图

    图  4  缺失数据恢复流程图

    图  5  点目标成像结果

    图  6  点目标方位向剖面图

    图  7  所提方法面目标成像结果

    图  8  区域A放大图

    图  9  区域B放大图

    算法1 GIRAF算法
     初始化: $ {{X}^{{\text{(0)}}}} $$\varepsilon 0$
     for n=1:I max
     第1步:
       利用公式(11),构建格拉姆矩阵${{\boldsymbol{G}}}$
       对${{\boldsymbol{G}}}$进行特征值分解
       利用式(14)计算湮灭滤波器${{\boldsymbol{h}}}$
       利用式(18),将滤波器${{\boldsymbol{h}}}$转换为权重
     第2步:
       求解最小二乘问题:
       通过ADMM迭代式(15)-式(17),计算$ {{X}^{{\text{(}}n{\text{)}}}} $
         if $0 < \varepsilon_n < \varepsilon_n - 1$ end
     end
    下载: 导出CSV

    表  1  星载IFMCW SAR模式仿真参数

    参数数值参数数值
    雷达工作载频(Hz)16.70脉冲发射频率(Hz)3479.00
    雷达有效速度(m/s)7613.00天线长度(m)4.48
    带宽(MHz)180.00接收脉冲(个)13
    景中心斜距(km)534.00缺失脉冲(个)12
    发射脉冲时宽(μs)266.71斜视角(°)0
    下载: 导出CSV

    表  2  研究区域A和B中不同方法的定量分析

    指标 IFMCWAAITCSLHRTSP
    RMSE(A)303.04178.26134.9367.78
    SSIM(A)0.390.480.510.63
    IE(A)11.5911.3811.3311.21
    RMSE(B)241.9498.7582.7957.57
    SSIM(B)0.390.500.460.61
    IE(B)9.829.759.969.22
    下载: 导出CSV
  • [1] 李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116

    LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics &Information Technology, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116
    [2] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [3] SALZMAN J, AKAMINE D, LEFEVRE R, et al. Interrupted synthetic aperture radar (SAR)[C]. Proceedings of the 2001 IEEE Radar Conference (Cat. No. 01CH37200), Atlanta, USA, 2001: 117–122.
    [4] AHMED N and UNDERWOOD C. Monostatic CW SAR concept for microsatellites[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 736–739.
    [5] 王宝平. 线性调频连续波雷达信号泄漏对消技术的研究[D]. [硕士论文], 电子科技大学, 2013.

    WANG Baoping. Research of FMCW radar leakage signal cancellation techonology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013.
    [6] LI Ning, WANG R, DENG Yunkai, et al. Improved full-aperture ScanSAR imaging algorithm based on aperture interpolation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1101–1105. doi: 10.1109/LGRS.2014.2384594
    [7] LI Ning, NIU Shilin, GUO Zhengwei, et al. Processing spaceborne interrupted FMCW SAR data with modified aperture interpolation technique[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6695–6698.
    [8] LIU Kang, YU Weidong, and LV Jiyu. Azimuth interrupted FMCW SAR for high-resolution imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4001105. doi: 10.1109/LGRS.2020.3019047
    [9] LIU Kang, YU Weidong, and LV Jiyu. Parameter design and imaging method of spaceborne azimuth interrupted FMCW SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4015505. doi: 10.1109/LGRS.2021.3095173
    [10] 闵林, 刘向前, 李宁. 基于积累孔径插值技术的星载间断调频连续波SAR成像方法[J]. 电子与信息学报, 2022, 44(7): 2461–2468. doi: 10.11999/JEIT210140

    MIN Lin, LIU Xiangqian, and LI Ning. Spaceborne interrupted frequency modulation continuous wave SAR imaging based on accumulated aperture interpolation technique[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2461–2468. doi: 10.11999/JEIT210140
    [11] HU Yue, LIU Xiaohan, and JACOB M. A generalized structured low-rank matrix completion algorithm for MR image recovery[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1841–1851. doi: 10.1109/TMI.2018.2886290
    [12] QU Xiaobo, MAYZEL M, CAI Jianfeng, et al. Accelerated NMR spectroscopy with low-rank reconstruction[J]. Angewandte Chemie International Edition, 2015, 54(3): 852–854. doi: 10.1002/anie.201409291
    [13] PRAMANIK A, AGGARWAL H K, and JACOB M. Deep generalization of structured low-rank algorithms (Deep-SLR)[J]. IEEE Transactions on Medical Imaging, 2020, 39(12): 4186–4197. doi: 10.1109/tmi.2020.3014581
    [14] FORNASIER M, RAUHUT H, and WARD R. Low-rank matrix recovery via iteratively reweighted least squares minimization[J]. SIAM Journal on Optimization, 2011, 21(4): 1614–1640. doi: 10.1137/100811404
    [15] ONGIE G and JACOB M. A fast algorithm for structured low-rank matrix recovery with applications to undersampled MRI reconstruction[C]. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 2016: 522–525.
    [16] ONGIE G and JACOB M. A fast algorithm for convolutional structured low-rank matrix recovery[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 535–550. doi: 10.1109/TCI.2017.2721819
    [17] QIU Tianyu, WANG Zi, LIU Huiting, et al. Review and prospect: NMR spectroscopy denoising and reconstruction with low-rank Hankel matrices and tensors[J]. Magnetic Resonance in Chemistry, 2021, 59(3): 324–345. doi: 10.1002/mrc.5082
    [18] CHEN Jinchi, GAO Weiguo, and WEI Ke. Exact matrix completion based on low rank Hankel structure in the Fourier domain[J]. Applied and Computational Harmonic Analysis, 2021, 55: 149–184. doi: 10.1016/j.acha.2021.05.002
    [19] LI Xi, LIU Guosui, and NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442
    [20] 李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717–731. doi: 10.12000/JR19085

    LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  262
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-05-28
  • 网络出版日期:  2022-06-14
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回