高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光无线信能同传网络中能量有效的波束赋形设计

陆杨 熊轲 高博 范典 潘高峰 艾渤

陆杨, 熊轲, 高博, 范典, 潘高峰, 艾渤. 可见光无线信能同传网络中能量有效的波束赋形设计[J]. 电子与信息学报, 2022, 44(8): 2611-2618. doi: 10.11999/JEIT220191
引用本文: 陆杨, 熊轲, 高博, 范典, 潘高峰, 艾渤. 可见光无线信能同传网络中能量有效的波束赋形设计[J]. 电子与信息学报, 2022, 44(8): 2611-2618. doi: 10.11999/JEIT220191
LU Yang, XIONG Ke, GAO Bo, FAN Dian, PAN Gaofeng, AI Bo. Energy-efficient Beamforming Design for Simultaneous Lightwave Information and Power Transfer in VLC systems[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2611-2618. doi: 10.11999/JEIT220191
Citation: LU Yang, XIONG Ke, GAO Bo, FAN Dian, PAN Gaofeng, AI Bo. Energy-efficient Beamforming Design for Simultaneous Lightwave Information and Power Transfer in VLC systems[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2611-2618. doi: 10.11999/JEIT220191

可见光无线信能同传网络中能量有效的波束赋形设计

doi: 10.11999/JEIT220191
基金项目: 国家自然科学基金(62101025),北京市科技新星计划(Z211100002121139),博士后创新人才支持计划(BX2021031)
详细信息
    作者简介:

    陆杨:男,1992年生,教授,研究方向为新一代通信网络与人工智能

    熊轲:男,1981年生,教授,研究方向为新一代通信网络与人工智能

    高博:男,1984年生,副教授,研究方向为新一代通信网络与人工智能

    范典:男,1992年生,高级工程师,研究方向为新一代通信网络与人工智能

    潘高峰:男,1981年生,教授,研究方向为新一代通信网络与人工智能

    艾渤:男,1976年生,教授,研究方向为新一代通信网络与人工智能

    通讯作者:

    高博 bogao@bjtu.edu.cn

  • 中图分类号: TN929.12

Energy-efficient Beamforming Design for Simultaneous Lightwave Information and Power Transfer in VLC systems

Funds: The National Natural Science Foundation of China (62101025), Beijing Nova Program (Z211100002121139), China Postdoctoral Science Foundation (BX2021031)
  • 摘要: 物联网是6G的核心应用场景,然而由于射频频谱资源稀缺,为数以百亿计的物联网设备提供高质量无线覆盖服务面临挑战。可见光通信(Visible Light Communication, VLC)作为射频通信的补充,提供了丰富的高频频谱资源。该文研究多用户VLC无线信能同传网络的可达能量效率(Energy Efficiency, EE)性能界,即在用户信息和能量需求、避免LED谐波失真以及VLC发射机总功率约束下最大化EE。为求解所考虑的问题,结合Dinkelbach方法和连续凸近似方法构建迭代算法优化波束赋形向量和直流偏置。从理论上证明了所提算法的收敛性,并讨论了避免LED谐波失真的工作条件对EE的影响。仿真结果验证了所提方法的有效性,分析了信息需求、能量需求和VLC发射机总功率对EE的影响规律,并讨论了LED视野对EE和VLC信号传播的影响。
  • 图  1  多用户MISO SLIPT网络模型

    图  2  算法1的收敛性

    图  3  EE与信息需求

    图  4  EE与VLC发射机总功率

    图  5  EE与FoV

    表  1  所提出算法

     算法1 求解问题${ {\bf{P} }_1}$的迭代算法
     (1) 初始化$ {\bar \alpha _n}[t] $和$ {\bar \beta _n}[t] $;
     (2) 设置$ t = 1 $;
     (3) While 连续两次迭代的最优解之差大于$ \varepsilon $ do
     (4)  初始化$ \lambda [0] $且$ F(\lambda [0]) > 0 $;
     (5)  $ q = 0 $;
     (6)  While $ F(\lambda [q]) \le \varepsilon $ do
     (7)   基于给定的$ \lambda [q] $求解凸问题${ {\bf{P} }_5}$得到
         $ \{ {\mathbf{w}}_n^ * [q],I_{\text{D}}^ * [q],\theta _n^ * [q]\} $;
         更新
     (8)   $ F(\lambda [q]) = \displaystyle\sum\limits_{n = 1}^N {\theta _n^ * [q]} - \lambda [q]{P_{{\text{Total}}}}(\{ {\mathbf{w}}_n^ * [q],I_{\text{D}}^ * [q]\} ) $;
     (9)   根据式(19)更新$ \lambda [q + 1] $;
     (10)   设置$ q = q + 1 $;
     (11)  end while
     (12)  设置$ {\mathbf{w}}_n^ * [t] = {\mathbf{w}}_n^ * [q] $和$ \theta _n^ * [t] = \theta _n^ * [q] $;
     (13)  根据式(20)和式(21)分别更新$ {\bar \alpha _n}[t] $和$ {\bar \beta _n}[t] $;
     (14)  设置$ t = t + 1 $;
     (15) end while
    下载: 导出CSV

    表  2  仿真参数

    变量值(m)变量值(m)变量变量
    LED1坐标(4.9,4.9,3.0)LED7坐标(5.1,4.9,3.0)$ A $2V$ {A_{\text{R}}} $1cm2
    LED2坐标(4.9,5.0,3.0)LED8坐标(5.1,5.0,3.0)$ [{I_{\text{L}}},{I_{\text{H}}}] $[0,5]A$ T({\varphi _{ni}}) $1
    LED3坐标(4.9,5.1,3.0)LED9坐标(5.1,5.1,3.0)$ {P_{{\text{Max}}}} $50W$\varPsi$60°
    LED4坐标(5.0,4.9,3.0)用户1坐标(5.1,6.0,1.5)$ {I_{\text{0}}} $${10^{ - 9} }$A$ \mu $1
    LED5坐标(5.0,5.0,3.0)用户2坐标(5.1,4.9,1.5)$ V $25mV$ \theta _{ni}^{1/2} $60°
    LED6坐标(5.0,5.1,3.0)用户3坐标(4.9,4.9,1.5)$ f $0.75$ \sigma _{}^2 $$ {10^{ - 15}} $
    下载: 导出CSV
  • [1] 袁伟杰, 李双洋, 种若汐, 等. 面向6G物联网的分布式译码技术[J]. 电子与信息学报, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343

    YUAN Weijie, LI Shuangyang, CHONG Ruoxi, et al. A distributed decoding algorithm for 6G Internet-of-Things networks[J]. Journal of Electronics &Information Technology, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343
    [2] ZHANG Rui and HO C K. MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1989–2001. doi: 10.1109/TWC.2013.031813.120224
    [3] 尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158

    YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158
    [4] 栾宁, 熊轲, 张煜, 等. 6G: 典型应用、关键技术与面临挑战[J]. 物联网学报, 2022, 6(1): 29–43. doi: 10.11959/j.issn.2096-3750.2022.00253

    LUAN Ning, XIONG Ke, ZHANG Yu, et al. 6G: Typical applications, key technologies and challenges[J]. Chinese Journal on Internet of Things, 2022, 6(1): 29–43. doi: 10.11959/j.issn.2096-3750.2022.00253
    [5] CHI Nan, ZHOU Yingjun, WEI Yiran, et al. Visible light communication in 6G: Advances, challenges, and prospects[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 93–102. doi: 10.1109/MVT.2020.3017153
    [6] WANG Jinyuan, FU Xiantao, LU Rongrong, et al. Tight capacity bounds for indoor visible light communications with signal-dependent noise[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1700–1713. doi: 10.1109/TWC.2020.3035615
    [7] PAN Gaofeng, YE Jie, ZHANG Chao, et al. Secure cooperative hybrid VLC-RF systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7097–7107. doi: 10.1109/TWC.2020.3007937
    [8] PAN Gaofeng, DIAMANTOULAKIS P D, MA Zheng, et al. Simultaneous lightwave information and power transfer: Policies, techniques, and future directions[J]. IEEE Access, 2019, 7: 28250–28257. doi: 10.1109/ACCESS.2019.2901855
    [9] NDJIONGUE A R, NGATCHED T M N, DOBRE O A, et al. Toward the use of re-configurable intelligent surfaces in VLC systems: Beam steering[J]. IEEE Wireless Communications, 2021, 28(3): 156–162. doi: 10.1109/MWC.001.2000365
    [10] LU Yang, XIONG Ke, FAN Pingyi, et al. Global energy efficiency in secure MISO SWIPT systems with non-linear power-Splitting EH model[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 216–232. doi: 10.1109/JSAC.2018.2872369
    [11] YANG Helin, ALPHONES A, ZHONG Wende, et al. Learning-based energy-efficient resource management by heterogeneous RF/VLC for ultra-reliable low-latency industrial IoT networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5565–5576. doi: 10.1109/TII.2019.2933867
    [12] ABDELHADY A M, AMIN O, SHIHADA B, et al. Spectral efficiency and energy harvesting in multi-cell SLIPT systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3304–3318. doi: 10.1109/TWC.2020.2972314
    [13] XIAO Yue, DIAMANTOULAKIS P, FANG Zequn, et al. Cooperative hybrid VLC/RF systems with SLIPT[J]. IEEE Transactions on Communications, 2021, 69(4): 2532–2545. doi: 10.1109/TCOMM.2021.3051908
    [14] GUO Yangbo, XIONG Ke, LU Yang, et al. Achievable information rate in hybrid VLC-RF networks with lighting energy harvesting[J]. IEEE Transactions on Communications, 2021, 69(10): 6852–6864. doi: 10.1109/TCOMM.2021.3098030
    [15] AL HAMMADI A, SOFOTASIOS P C, MUHAIDAT S, et al. Non-orthogonal multiple access for hybrid VLC-RF networks with imperfect channel state information[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 398–411. doi: 10.1109/TVT.2020.3044837
    [16] LIU Xiaodong, WANG Yuhao, ZHOU Fuhui, et al. Beamforming design for secure MISO visible light communication networks with SLIPT[J]. IEEE Transactions on Communications, 2020, 68(12): 7795–7809. doi: 10.1109/TCOMM.2020.3019818
    [17] MA Shuai, ZHANG Fan, LI Hang, et al. Simultaneous lightwave information and power transfer in visible light communication systems[J]. IEEE Transactions on Wireless Communications, 2019, 18(12): 5818–5830. doi: 10.1109/TWC.2019.2939242
    [18] ARFAOUI M A, ZAID H, REZKI Z, et al. Artificial noise-based beamforming for the MISO VLC wiretap channel[J]. IEEE Transactions on Communications, 2019, 67(4): 2866–2879. doi: 10.1109/TCOMM.2018.2889649
    [19] HSIAO Y C, WU Y C, and LIN Che. Energy-efficient beamforming design for MU-MISO mixed RF/VLC heterogeneous wireless networks[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3770–3784. doi: 10.1109/TSP.2019.2920612
    [20] ZHANG Haijun, LIU Na, LONG Keping, et al. Energy efficient subchannel and power allocation for software-defined heterogeneous VLC and RF networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 658–670. doi: 10.1109/JSAC.2018.2815478
    [21] DIAMANTOULAKIS P D, KARAGIANNIDIS G K, and DING Zhiguo. Simultaneous lightwave information and power transfer (SLIPT)[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 764–773. doi: 10.1109/TGCN.2018.2818325
    [22] WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  275
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-06-12
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回