高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图像边缘权重优化的最小生成树分割提取

林坚普 王栋 肖智阳 林志贤 张永爱

林坚普, 王栋, 肖智阳, 林志贤, 张永爱. 图像边缘权重优化的最小生成树分割提取[J]. 电子与信息学报, 2023, 45(4): 1494-1504. doi: 10.11999/JEIT220182
引用本文: 林坚普, 王栋, 肖智阳, 林志贤, 张永爱. 图像边缘权重优化的最小生成树分割提取[J]. 电子与信息学报, 2023, 45(4): 1494-1504. doi: 10.11999/JEIT220182
LIN Jianpu, WANG Dong, XIAO Zhiyang, LIN Zhixian, ZHANG Yong’ai. Minimum Spanning Tree Segmentation and Extract with Image Edge Weight Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1494-1504. doi: 10.11999/JEIT220182
Citation: LIN Jianpu, WANG Dong, XIAO Zhiyang, LIN Zhixian, ZHANG Yong’ai. Minimum Spanning Tree Segmentation and Extract with Image Edge Weight Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1494-1504. doi: 10.11999/JEIT220182

图像边缘权重优化的最小生成树分割提取

doi: 10.11999/JEIT220182
基金项目: 国家重点研发计划(2021YFB3600603),福建省自然科学基金 (2019J01221, 2020J01468)
详细信息
    作者简介:

    林坚普:男,讲师,研究方向为数字图像处理技术、人工智能技术、3D立体显示技术、新型显示技术

    王栋:男,硕士生,研究方向为数字图像处理技术

    肖智阳:男,硕士生,研究方向为数字图像处理技术

    林志贤:男,教授,研究方向为显示技术、电路与系统、电润湿电子纸、数字图像处理技术

    张永爱:男,研究员,研究方向为数字图像处理技术、3D显示技术

    通讯作者:

    张永爱 yongaizhang@fzu.edu.cn

  • 中图分类号: TN911.73; TP751.1

Minimum Spanning Tree Segmentation and Extract with Image Edge Weight Optimization

Funds: The National Key R&D Program of China (2021YFB3600603), The Natural Science Foundation of Fujian Province (2019J01221, 2020J01468)
  • 摘要: 针对无监督图像分割方法对噪声敏感而导致图像建模困难、分割结果准确率低等问题,该文提出一种图像边缘权重优化的最小生成树分割提取方法。首先,利用L0梯度最小值平滑处理噪声再结合Otsu优化Canny边缘检测,得到更加准确的边缘信息;其次,重新设计权重函数,采用更加合理的色差空间构建加权图,通过改进分割准则优化物体合并与区分过程;最后,选择不同类型图片进行抗噪性、分割效果实验。实验结果表明:相对于其他算法,该文算法的抗噪性能优秀,分割精度平均提升5.15%,过分割率平均下降32.07%,欠分割率平均下降2.69%。将其运用在实际航空遥感图像的河道湖泊提取中,所得结果相比其他主流算法结构更加完整,无关信息更少,抗噪性能更好。
  • 图  1  L0梯度最小值图像平滑与双边平滑对比实验结果

    图  2  算法流程图

    图  3  合成图像分割结果

    图  4  实验原始图

    图  5  改进算法与其他算法实验结果图

    图  6  改进算法与其他算法抗噪性结果图

    图  7  各算法分割指标曲线图

    图  8  无噪声下实验分割提取结果图

    图  9  有噪声下实验分割提取结果图

    表  1  合成图像分割结果峰值信噪比/平均结构相似性 (dB / %)

    噪声比例FH方法RSSFCASFFCMAFCF本文方法
    高斯5%18.21 / 81.9626.48 / 94.5926.04 / 95.7713.78 / 84.1727.63 / 96.61
    高斯10%20.71 / 87.0621.06 / 68.2021.68 / 94.3313.67 / 83.8223.72 / 94.97
    高斯15%15.67 / 79.3617.90 / 41.1419.07 / 92.4813.41 / 83.2721.79 / 94.11
    乘性5%23.54 / 85.7224.57 / 74.6732.55 / 97.8432.49 / 97.5633.23 / 97.89
    乘性10%22.84 / 84.7620.44 / 51.6932.57 / 97.2420.20 / 94.7032.76 / 97.43
    乘性15%19.33 / 80.7119.87 / 48.7932.44 / 96.9122.62 / 92.8428.18 / 97.23
    泊松21.31 / 82.0325.08 / 82.2127.92 / 92.8328.49 / 93.7634.84 / 96.94
    下载: 导出CSV
  • [1] GANGLOFF H, COURBOT J B, MONFRINI E, et al. Unsupervised image segmentation with spatial triplet Markov trees[C]. ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 2021: 1790–1794.
    [2] HUANG Quanwei, ZHOU Yuezhi, TAO Linmi, et al. A Chan-Vese model based on the Markov chain for unsupervised medical image segmentation[J]. Tsinghua Science and Technology, 2021, 26(6): 833–844. doi: 10.26599/TST.2020.9010042
    [3] GANGLOFF H, MORALES K, and PETETIN Y. A general parametrization framework for pairwise Markov models: An application to unsupervised image segmentation[C]. 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing, Gold Coast, Australia, 2021: 1–6.
    [4] ZHANG Ling, LIU Jianchao, SHANG Fangxing, et al. Robust segmentation method for noisy images based on an unsupervised denosing filter[J]. Tsinghua Science and Technology, 2021, 26(5): 736–748. doi: 10.26599/TST.2021.9010021
    [5] 赵凤, 孙文静, 刘汉强, 等. 基于近邻搜索花授粉优化的直觉模糊聚类图像分割[J]. 电子与信息学报, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428

    ZHAO Feng, SUN Wenjing, LIU Hanqiang, et al. Intuitionistic fuzzy clustering image segmentation based on flower pollination optimization with nearest neighbor searching[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428
    [6] 徐金东, 赵甜雨, 冯国政, 等. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079–2086. doi: 10.11999/JEIT200263

    XU Jindong, ZHAO Tianyu, FENG Guozheng, et al. Image segmentation algorithm based on context fuzzy C-means clustering[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2079–2086. doi: 10.11999/JEIT200263
    [7] LI Zhimei, ZHANG Wanzhen, and YANG Hua. Color image segmentation based on wavelet transform and fuzzy kernel clustering[C]. 2020 International Conference on Virtual Reality and Intelligent Systems, Zhangjiajie, China, 2020: 411–414.
    [8] JIN Can, YE Zhiwei, YAN Lingyu, et al. Image segmentation using fuzzy C-means optimized by ant lion optimization[C]. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Metz, France, 2019: 388–393.
    [9] GUO Li, CHEN Long, LU Xiliang, et al. Membership affinity lasso for fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(2): 294–307. doi: 10.1109/TFUZZ.2019.2905114
    [10] LEI Tao, LIU Peng, JIA Xiaohong, et al. Automatic fuzzy clustering framework for image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(9): 2078–2092. doi: 10.1109/TFUZZ.2019.2930030
    [11] YANG Tingting, ZHOU Suyin, XU Aijun, et al. A method for tree image segmentation combined adaptive mean shifting with image abstraction[J]. Journal of Information Processing Systems, 2020, 16(6): 1424–1436. doi: 10.3745/JIPS.02.0151
    [12] PARK H. α-MeanShift++: Improving MeanShift++ for image segmentation[J]. IEEE Access, 2021, 9: 131430–131439. doi: 10.1109/ACCESS.2021.3114223
    [13] XIA Kaijian, GU Xiaoqing, and ZHANG Yudong. Oriented grouping-constrained spectral clustering for medical imaging segmentation[J]. Multimedia Systems, 2020, 26(1): 27–36. doi: 10.1007/S00530-019-00626-8
    [14] NAIK S S. A hybrid approach towards color image segmentation[C]. 2021 International Conference on Intelligent Technologies, Hubli, India, 2021: 1–5.
    [15] 刘仲民, 李战明, 李博皓, 等. 基于稀疏矩阵的谱聚类图像分割算法[J]. 吉林大学学报:工学版, 2017, 47(4): 1308–1313. doi: 10.13229/J.CNKI.JDXBGXB201704042

    LIU Zhongmin, LI Zhanming, LI Bohao, et al. Spectral clustering image segmentation based on sparse matrix[J]. Journal of Jilin University:Engineering and Technology Edition, 2017, 47(4): 1308–1313. doi: 10.13229/J.CNKI.JDXBGXB201704042
    [16] HE Wenjing, SONG Hongjun, and YAO Yuanyuan. An improved region merging approach for SAR complex water area segmentation[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 2019: 1–5.
    [17] LONG Xiaodong and SUN Jian. Image segmentation based on the minimum spanning tree with a novel weight[J]. Optik, 2020, 221: 165308. doi: 10.1016/j.ijleo.2020.165308
    [18] BOGACH I V, LUPIAK D D, IVANOV Y Y, et al. Analysis and experimental research of modifications of the image segmentation method using graph theory[C]. 2019 International Siberian Conference on Control and Communications, Tomsk, Russia, 2019: 1–4.
    [19] FELZENSZWALB P F and HUTTENLOCHER D P. Efficient Graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2): 167–181. doi: 10.1023/B:VISI.0000022288.19776.77
    [20] XU Li, LU Cewu, XU Yi, et al. Image smoothing via L0 gradient minimization[J]. ACM Transactions on Graphics, 2011, 30(6): 1–12. doi: 10.1145/2070781.2024208
    [21] 杨振亚, 王勇, 杨振东, 等. RGB颜色空间的矢量-角度距离色差公式[J]. 计算机工程与应用, 2010, 46(6): 154–156. doi: 10.3778/J.ISSN.1002-8331.2010.06.044

    YANG Zhenya, WANG Yong, YANG Zhendong, et al. Vector-Angular distance color difference formula in RGB color space[J]. Computer Engineering and Applications, 2010, 46(6): 154–156. doi: 10.3778/J.ISSN.1002-8331.2010.06.044
    [22] JIA Xiaohong, LEI Tao, DU Xiaogang, et al. Robust self-sparse fuzzy clustering for image segmentation[J]. IEEE Access, 2020, 8: 146182–146195. doi: 10.1109/ACCESS.2020.3015270
    [23] LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1753–1766. doi: 10.1109/TFUZZ.2018.2889018
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  339
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 修回日期:  2022-05-13
  • 录用日期:  2022-06-08
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回