高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字孪生使能的智能超表面边缘计算网络任务卸载

苏健 钱震 李斌

苏健, 钱震, 李斌. 数字孪生使能的智能超表面边缘计算网络任务卸载[J]. 电子与信息学报, 2022, 44(7): 2416-2424. doi: 10.11999/JEIT220180
引用本文: 苏健, 钱震, 李斌. 数字孪生使能的智能超表面边缘计算网络任务卸载[J]. 电子与信息学报, 2022, 44(7): 2416-2424. doi: 10.11999/JEIT220180
SU Jian, QIAN Zhen, LI Bin. Digital Twin Empowered Task Offloading for RIS-Assisted Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2416-2424. doi: 10.11999/JEIT220180
Citation: SU Jian, QIAN Zhen, LI Bin. Digital Twin Empowered Task Offloading for RIS-Assisted Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2416-2424. doi: 10.11999/JEIT220180

数字孪生使能的智能超表面边缘计算网络任务卸载

doi: 10.11999/JEIT220180
基金项目: 国家自然科学基金(62101277),江苏省自然科学基金(BK20200822)
详细信息
    作者简介:

    苏健:男,1986年生,副教授,硕士生导师,研究方向为智能物联网

    钱震:男,1999年生,硕士生,研究方向为智能反射面技术、移动边缘计算

    李斌:男,1987年生,副教授,硕士生导师,研究方向为智能反射面技术、移动边缘计算

    通讯作者:

    李斌 bin.li@nuist.edu.cn

  • 中图分类号: TN929.5

Digital Twin Empowered Task Offloading for RIS-Assisted Edge Computing Networks

Funds: The National Natural Science Foundation of China (62101277), The National Natural Science Foundation of Jiangsu Province (BK20200822)
  • 摘要: 针对新兴的计算密集型应用对移动用户高计算性能需求问题,该文提出一种数字孪生(DT)结合智能反射面(RIS)辅助的移动边缘计算(MEC)任务卸载方案。首先,在满足用户传输功率、用户和资源设备能耗、计算资源限制条件下,通过联合优化用户卸载决策、用户传输功率、RIS 相移、波束成形矢量、计算资源分配,建立一个系统能耗最小化问题;其次,将该非凸组合优化问题分解为3个子问题,使用深度双Q网络(DDQN)方法确定用户卸载策略;然后对每个训练时间步进行一次求解,基于交替迭代方法得到问题的优化解。仿真结果表明,基于DDQN的算法训练速度较快,有效降低了系统总能耗。
  • 图  1  智能超表面辅助DTEN模型图

    图  2  基于DDQN的DRL训练框架图

    图  3  DDQN算法收敛性图

    图  4  不同方案性能对比图

    图  5  用户数量与用户总能耗间的关系

    图  6  不同方案下系统能耗与任务量关系图

    表  1  基于DDQN能耗最小化算法(算法1)

     输入:最大回合数E,学习率$\beta $,折扣回报$\gamma $,用户数K,二分法精度$\varepsilon $。
     步骤1 初始化主网络参数$\omega $,目标网络参数${\omega ^ - }$,经验数组,用户、基站和资源设备位置,用户任务信息$M_k^t$
     步骤2 for $t = 1:{E}$
          更新$t$时刻用户位置和任务信息;
          for $ {\text{step}} = {\text{1}}:K $
            根据当前状态$s\left[ t \right]$和策略${\pi _\omega }$选择动作$a\left[ t \right]$;
            根据3.2,3.3节讨论和动作$a\left[ t \right]$,使用交替迭代法和二分法求解$ {\theta _{k,n}},{{\mathbf{w}}_k},{p_k},f_k^l,f_{k,q}^r,f_k^e $;
            根据奖励函数计算$r\left( t \right)$,观察下一个状态$s\left[ {t + 1} \right]$,并存储$\left\langle {s\left[ t \right],a\left[ t \right],r\left[ t \right],s\left[ {t + 1} \right]} \right\rangle $到经验数组;
            从经验回放数组随机取出一组经验,根据式(7)计算损失函数,并更新当前主网络参数$\omega $;
            每隔$Z$步更新目标网络参数${\omega ^ - }$;
     步骤3 输出任务卸载策略网络参数$\omega $。
    下载: 导出CSV

    表  2  DDQN训练参数

    参数参数
    隐藏层数量$L$3惩罚值$ C $100
    折扣回报$\gamma $0.9开销值$\vartheta $(0,1,5)
    最大回合数E100 k二分法精度$\varepsilon $10–6
    学习率$\beta $5×10–3经验回放数组大小215
    目标网络更新频率$Z$320贪婪策略比例0.1
    下载: 导出CSV
  • [1] ZHANG Jiayi, LIU Heng, WU Qingqing, et al. RIS-aided next-generation high-speed train communications: Challenges, solutions, and future directions[J]. IEEE Wireless Communications, 2021, 28(6): 145–151. doi: 10.1109/MWC.001.2100170
    [2] 徐勇军, 高正念, 王茜竹, 等. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法[J]. 电子与信息学报, 待发表.

    XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology, To be published.
    [3] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [4] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [5] XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094
    [6] CHEN Yuanbin, WANG Ying, ZHANG Jiayi, et al. QoS-driven spectrum sharing for reconfigurable intelligent surfaces (RISs) aided vehicular networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5969–5985. doi: 10.1109/TWC.2021.3071332
    [7] SHI Enyu, ZHANG Jiayi, CHEN Shuaifei, et al. Wireless energy transfer in RIS-aided cell-free massive MIMO systems: Opportunities and challenges[J]. IEEE Communications Magazine, 2022, 60(3): 26–32. doi: 10.1109/MCOM.001.2100671
    [8] ZHANG Yan, ZHANG Jiayi, DI RENZO M, et al. Reconfigurable intelligent surfaces with outdated channel state Information: Centralized vs. distributed deployments[J]. IEEE Transactions on Communications, 2022, 70(4): 2742–2756. doi: 10.1109/TCOMM.2022.3146344
    [9] JIN Yu, ZHANG Jiayi, HUANG Chongwen, et al. Multiple residual dense networks for reconfigurable intelligent surfaces cascaded channel estimation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2134–2139. doi: 10.1109/TVT.2021.3132305
    [10] JIN Yu, ZHANG Jiayi, ZHANG Xiaodan, et al. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11083–11088. doi: 10.1109/TVT.2021.3109937
    [11] YANG Zhaohui, XU Wei, HUANG Chongwen, et al. Beamforming design for multiuser transmission through reconfigurable intelligent surface[J]. IEEE Transactions on Communications, 2021, 69(1): 589–601. doi: 10.1109/TCOMM.2020.3028309
    [12] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [13] BAI Tong, PAN Cunhua, DENG Yansha, et al. Latency minimization for intelligent reflecting surface aided mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2666–2682. doi: 10.1109/JSAC.2020.3007035
    [14] CHU Zheng, XIAO Pei, SHOJAFAR M, et al. Intelligent reflecting surface assisted mobile edge computing for internet of things[J]. IEEE Wireless Communications Letters, 2021, 10(3): 619–623. doi: 10.1109/LWC.2020.3040607
    [15] WANG Qun, ZHOU Fuhui, HU Han, et al. Energy-efficient design for IRS-assisted MEC networks with NOMA[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–6.
    [16] LI Zhiyang, CHEN Ming, YANG Zhaohui, et al. Energy efficient reconfigurable intelligent surface enabled mobile edge computing networks with NOMA[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 427–440. doi: 10.1109/TCCN.2021.3068750
    [17] HUANG Shanfeng, WANG Shuai, WANG Rui, et al. Reconfigurable intelligent surface assisted mobile edge computing with heterogeneous learning tasks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 369–382. doi: 10.1109/TCCN.2021.3056707
    [18] WU Yiwen, ZHANG Ke, and ZHANG Yan. Digital twin networks: A survey[J]. IEEE Internet of Things Journal, 2021, 8(18): 13789–13804. doi: 10.1109/JIOT.2021.3079510
    [19] DAI Yueyue, ZHANG Ke, MAHARJAN S, et al. Deep reinforcement learning for stochastic computation offloading in digital twin networks[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 4968–4977. doi: 10.1109/TII.2020.3016320
    [20] LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 5098–5107. doi: 10.1109/TII.2020.3017668
    [21] SUN Wen, ZHANG Haibin, WANG Rong, et al. Reducing offloading latency for digital twin edge networks in 6G[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12240–12251. doi: 10.1109/TVT.2020.3018817
    [22] LIU Tong, TANG Lun, WANG Weili, et al. Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network[J]. IEEE Internet of Things Journal, 2022, 9(2): 1427–1444. doi: 10.1109/JIOT.2021.3086961
    [23] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
    [24] HU Xiaoyan, MASOUROS C, WONG K K, et al. Reconfigurable intelligent surface aided mobile edge computing: From optimization-based to location-only learning-based solutions[J]. IEEE Transactions on Communications, 2021, 69(6): 3709–3725. doi: 10.1109/TCOMM.2021.3066495
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1078
  • HTML全文浏览量:  467
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-05-30
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回