高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非凸投影自适应Hammerstein滤波算法

刘兆霆 鲍辉明 姚英彪

刘兆霆, 鲍辉明, 姚英彪. 非凸投影自适应Hammerstein滤波算法[J]. 电子与信息学报, 2023, 45(4): 1313-1320. doi: 10.11999/JEIT220171
引用本文: 刘兆霆, 鲍辉明, 姚英彪. 非凸投影自适应Hammerstein滤波算法[J]. 电子与信息学报, 2023, 45(4): 1313-1320. doi: 10.11999/JEIT220171
LIU Zhaoting, BAO Huiming, YAO Yingbiao. Non-Convex Projection Adaptive Hammerstein Filtering[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1313-1320. doi: 10.11999/JEIT220171
Citation: LIU Zhaoting, BAO Huiming, YAO Yingbiao. Non-Convex Projection Adaptive Hammerstein Filtering[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1313-1320. doi: 10.11999/JEIT220171

非凸投影自适应Hammerstein滤波算法

doi: 10.11999/JEIT220171
基金项目: 国家自然科学基金(61677192),微机电系统浙江省工程研究中心开放课题基金(MEMSZJERC2204)
详细信息
    作者简介:

    刘兆霆:男,副教授,研究方向为传感器网络信号处理、自适应信号处理、机器学习

    鲍辉明:男,硕士生,研究方向为自适应信号处理

    姚英彪:男,教授,研究方向为传感器网络信号处理、通信信号处理、目标定位和跟踪

    通讯作者:

    刘兆霆 liuzht@hdu.edu.cn

  • 中图分类号: TN911.7

Non-Convex Projection Adaptive Hammerstein Filtering

Funds: The National Natural Science Foundation of China(61677192), The Opening Foundation of Zhejiang Engineering Research Center of MEMS(MEMSZJERC2204)
  • 摘要: 该文研究了Hammerstein系统参数辨识和非线性系统预测问题,提出一种基于非凸投影的自适应滤波算法。论文将问题归结为具有非凸可行域的约束优化问题,并建立了基于交替方向乘子法(ADMM)和递归最小二乘相结合的算法框架。在该算法框架下,非凸约束优化问题的全局最优解可通过岭回归和欧几里得(Euclid)投影循环计算得到。将提出的算法分别应用于Hammerstein系统的参数辨识、非线性未知系统预测以及非线性声学回声消除,并进行仿真实验,结果显示所提算法具有较好的收敛性和稳定性,能够得到较准确的辨识和预测效果。
  • 图  1  自适应Hammerstein滤波器

    图  2  RncPLS和RncPLS0算法的MSD和MSE比较

    图  3  方差为0.001时不同算法的MSD和MSE比较

    图  4  非线性系统预测的自适应Hammerstein滤波器

    图  5  预测输出MSE与迭代次数n的关系曲线

    图  6  经过2 000组迭代后的预测输出与测试次数k的关系

    图  7  自适应Hammerstein滤波器应用于声学回声消除

    图  8  不同算法的误差信号和回波损耗增益

    算法1 提出的RncPLS算法
     输入:d(n), x(n)
     输出:${\hat {\boldsymbol{a}}}(n),{\hat {\boldsymbol{b}}}(n),{\boldsymbol{\theta}} (n) = {\bar {\boldsymbol{\theta}} _L}(n)$
     初始值:${ {\bar {\boldsymbol{\theta} } }_L}(0),\bar {\boldsymbol{R} }_L^{ - 1}(0),{ {\boldsymbol{\varphi} } }(0),{{\boldsymbol{\eta}} }(0)$
     算法迭代:在每个时刻n,由输入按照以下步骤得到估计值输出,迭代直至收敛。
     1. ${ {\boldsymbol{k} } }(n) = \dfrac{ { {\bar {\boldsymbol{R} } }_L^{ - 1}(n - 1){\boldsymbol{ {h} } }(n)} }{ {\gamma + { {h}^{\rm{T} } }(n){\bar {\boldsymbol{R} } }_L^{ - 1}(n - 1){ {\boldsymbol{h} } }(n)} }$
     2. ${\bar {\boldsymbol{\theta}} _0}(n) = ({{\boldsymbol{I}}} - {{\boldsymbol{k}}}(n){ {{\boldsymbol{h}}}^{\rm{T}}}(n)){\bar {\boldsymbol{\theta}} _L}(n - 1) + {{\boldsymbol{k}}}(n)d(n)$,${\bar {\boldsymbol{R} } }_0^{ - 1}(n) = {\gamma ^{ - 1} }{\bar {\boldsymbol{R} } }_L^{ - 1}(n - 1) - {\gamma ^{ - 1} }{{\boldsymbol{k}}}(n){ { {\boldsymbol{h} } }^{\rm{T} } }(n){\bar {\boldsymbol{R} } }_L^{ - 1}(n - 1)$
     3. for l = 1, 2, ···, L
     4. ${\tau _l}(n - 1) = \dfrac{ {\sqrt {\boldsymbol{\xi}} ({\chi _l}(n - 1) - \gamma {\chi _l}(n - 2))} }{ {1 - \gamma } }$,${ {{\boldsymbol{g}}}_l} = \dfrac{ {\sqrt {\boldsymbol{\xi}} {\bar {\boldsymbol{R}}}_{l - 1}^{ - 1}(n){ {{\boldsymbol{e}}}_l} } }{ {1 + {\boldsymbol{\xi}} {{\boldsymbol{e}}}_l^{\rm{T}}{\bar {\boldsymbol{R}}}_{l - 1}^{ - 1}(n){ {{\boldsymbol{e}}}_l} } }$
     5. ${\bar {\boldsymbol{\theta} } _l}(n) = ({\boldsymbol{I} } - \sqrt {\boldsymbol{\xi} } { {\boldsymbol{g} }_l}{\boldsymbol{e} }_l^{\rm{T} }){\bar {\boldsymbol{\theta} } _{l - 1} }(n) + {{\boldsymbol{g}}_l}{\tau _l}(n - 1)$,${\bar {\boldsymbol{R}}}_l^{ - 1}(n) = {\bar {\boldsymbol{R}}}_{l - 1}^{ - 1}(n) - \sqrt {\boldsymbol{\xi}} { {{\boldsymbol{g}}}_l}{{\boldsymbol{e}}}_l^{\rm{T}}{\bar {\boldsymbol{R}}}_{l - 1}^{ - 1}(n)$
     6. end for
     7. $\omega (n) = {\boldsymbol{\theta} } (n) + {\boldsymbol{\eta}} (n - 1)$
     8. ${\boldsymbol{\hat a} }(n) = {\boldsymbol{u} }(n){ {\boldsymbol{u} }^{\rm{T}}}(n){\omega _1}(n)$,${\hat {\boldsymbol{b} } }(n) = \dfrac{ { {\boldsymbol{\varTheta} } _2^{\rm{T} }(n){u}(n)} }{ {\omega _1^{\rm{T}}(n){u}(n)} }$
     9. $\varphi (n) = ({ {\boldsymbol{\varTheta} } ^{\rm{T} } }(n){\boldsymbol{u} }(n)) \otimes {\boldsymbol{u} }(n)$,${{\boldsymbol{\eta}} }(n) = {{\boldsymbol{\eta}} }(n - 1) + {{\boldsymbol{\theta}} }(n) - {\varphi }(n)$
     10. ${\boldsymbol{\chi} } (n) = {[{\chi _1}(n),{\chi _2}(n), \cdots ,{\chi _L}(n)]^{\rm{T}}}{\text{ = } }\varphi (n) - {\boldsymbol{\eta} } (n)$
     11. n = n+1,返回步骤1,直至达到收敛条件
    下载: 导出CSV
  • [1] GOKCEOGLU A, GHADAM A, and VALKAMA M. Steady-state performance analysis and step-size selection for LMS-adaptive wideband feedforward power amplifier linearizer[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 82–99. doi: 10.1109/TSP.2011.2169254
    [2] ALONGE F, D’IPPOLITO F, and CANGEMI T. Identification and robust control of DC/DC converter Hammerstein model[J]. IEEE Transactions on Power Electronics, 2008, 23(6): 2990–3003. doi: 10.1109/TPEL.2008.2005034
    [3] SHI Kun, ZHOU G T, and VIBERG M. Compensation for nonlinearity in a Hammerstein system using the coherence function with application to nonlinear acoustic echo cancellation[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5853–5858. doi: 10.1109/TSP.2007.901657
    [4] 赵益波, 严涛, 李春彪, 等. α-稳定分布噪声环境下的非线性回声消除研究[J]. 电子学报, 2020, 48(1): 59–65. doi: 10.3969/j.issn.0372-2112.2020.01.007

    ZHAO Yibo, YAN Tao, LI Chunbiao, et al. Research on nonlinear echo cancellation in the α-stable noise environment[J]. Acta Electronica Sinica, 2020, 48(1): 59–65. doi: 10.3969/j.issn.0372-2112.2020.01.007
    [5] KOMATSU K, MIYAJI Y, and UEHARA H. Basis function selection of frequency-domain Hammerstein self-interference canceller for in-band full-duplex wireless communications[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3768–3780. doi: 10.1109/TWC.2018.2816061
    [6] 赵海全, 李磊. 一种抗冲击噪声的对数总体最小二乘自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 284–288. doi: 10.11999/JEIT200344

    ZHAO Haiquan and LI Lei. A Logarithmic Total least squares adaptive filtering algorithm for impulsive noise suppression[J]. Journal of Electronics &Information Technology, 2021, 43(2): 284–288. doi: 10.11999/JEIT200344
    [7] MA Junxia, HUANG Biao, and DING Feng. Iterative identification of Hammerstein parameter varying systems with parameter uncertainties based on the variational Bayesian approach[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(3): 1035–1045. doi: 10.1109/TSMC.2017.2756913
    [8] WANG Dongqing, ZHANG Shuo, GAN Min, et al. A novel EM identification method for Hammerstein systems with missing output data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2500–2508. doi: 10.1109/TII.2019.2931792
    [9] HONG Xia, CHEN Sheng, HARRIS C J, et al. Single-carrier frequency domain equalization for Hammerstein communication systems using complex-valued neural networks[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4467–4478. doi: 10.1109/TSP.2014.2333555
    [10] GREBLICKI W and PAWLAK M. The weighted nearest neighbor estimate for hammerstein system identification[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1550–1565. doi: 10.1109/TAC.2018.2866463
    [11] GÓMEZ J C and BAEYENS E. Subspace-based identification algorithms for Hammerstein and wiener models[J]. European Journal of Control, 2005, 11(2): 127–136. doi: 10.3166/EJC.11.127-136
    [12] LIU Ying and LI Chunguang. Distributed prediction via adaptive Hammerstein filter over networked systems[J]. IEEE Transactions on Signal and Information Processing over Networks, 2018, 4(3): 534–548. doi: 10.1109/TSIPN.2017.2780620
    [13] JERAJ J and MATHEWS V J. Stochastic mean-square performance analysis of an adaptive Hammerstein filter[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2168–2177. doi: 10.1109/TSP.2006.873587
    [14] 方维维, 刘梦然, 王云鹏, 等. 面向物联网隐私数据分析的分布式弹性网络回归学习算法[J]. 电子与信息学报, 2020, 42(10): 2403–2411. doi: 10.11999/JEIT190739

    FANG Weiwei, LIU Mengran, WANG Yunpeng, et al. A Distributed elastic net regression algorithm for private data analytics in internet of things[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2403–2411. doi: 10.11999/JEIT190739
    [15] LE Fengmin, MARKOVSKY I, FREEMAN C T, et al. Recursive identification of Hammerstein systems with application to electrically stimulated muscle[J]. Control Engineering Practice, 2012, 20(4): 386–396. doi: 10.1016/j.conengprac.2011.08.001
    [16] DONG Shijian, LI Yu, ZHANG Wenan, et al. Robust extended recursive least squares identification algorithm for Hammerstein systems with dynamic disturbances[J]. Digital Signal Processing, 2020, 101: 102716. doi: 10.1016/j.dsp.2020.102716
    [17] LEE K, BAEK Y, and PARK Y. Nonlinear acoustic echo cancellation using a nonlinear postprocessor with a linearly constrained affine projection algorithm[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2015, 62(9): 881–885. doi: 10.1109/TCSII.2015.2435711
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  209
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-04-28
  • 网络出版日期:  2022-06-28
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回