高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扩容型正交抑噪多级差分混沌移位键控通信系统

张刚 王磊 蒋忠均

张刚, 王磊, 蒋忠均. 扩容型正交抑噪多级差分混沌移位键控通信系统[J]. 电子与信息学报, 2023, 45(3): 1032-1042. doi: 10.11999/JEIT220141
引用本文: 张刚, 王磊, 蒋忠均. 扩容型正交抑噪多级差分混沌移位键控通信系统[J]. 电子与信息学报, 2023, 45(3): 1032-1042. doi: 10.11999/JEIT220141
ZHANG Gang, WANG Lei, JIANG Zhongjun. Expanded Capacity Orthogonal Noise Suppression Multi-level Differential Chaotic Shift Keying Communication System[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1032-1042. doi: 10.11999/JEIT220141
Citation: ZHANG Gang, WANG Lei, JIANG Zhongjun. Expanded Capacity Orthogonal Noise Suppression Multi-level Differential Chaotic Shift Keying Communication System[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1032-1042. doi: 10.11999/JEIT220141

扩容型正交抑噪多级差分混沌移位键控通信系统

doi: 10.11999/JEIT220141
基金项目: 国家自然科学基金(61771085),重庆市自然科学基金(cstc2021jcyj-msxmX0836),重庆市教育委员会科研项目(KJQN201900601)
详细信息
    作者简介:

    张刚:男,博士,教授,研究方向为随机共振微弱信号检测、混沌键控技术

    王磊:男,硕士生,研究方向为混沌保密通信

    蒋忠均:男,硕士,高级工程师,研究方向为随机共振微弱信号检测、混沌键控技术

    通讯作者:

    王磊 1138936818@qq.com

  • 中图分类号: TN914; TN911.3

Expanded Capacity Orthogonal Noise Suppression Multi-level Differential Chaotic Shift Keying Communication System

Funds: The National Natural Science Foundation of China (61771085), Chongqing Natural Science Foundation of China (cstc2021jcyj-msxmX0836), Chongqing Education Commission Scientific Research Project (KJQN201900601)
  • 摘要: 针对多进制差分混沌移位键控系统传输速率较小且误码率(BER)较差的缺点,该文提出一种扩容型正交抑噪多进差分混沌移位键控(DCSK)通信系统。在该系统的发送端设计了一种改进型混沌基信号发生器,可产生4组正交的混沌基信号,使得通信容量极大提升。定义综合效用函数,并引入粒子群算法对系统各参数优化。对该系统在加性高斯白噪声(AWGN)和Rayleigh衰落信道下理论误码率公式进行推导及系统仿真同时对比不同系统的综合效用函数。结果表明,该系统具有更低的误码率和更优综合效用,具有较好的实际应用价值。
  • 图  1  改进型混沌基信号发生器(IOCG)原理图

    图  2  ECO-NS-MDCSK系统第k帧发送端框图

    图  3  ECO-NS-MDCSK系统第k帧接收端框图

    图  4  多径Rayleigh衰落信道模型

    图  5  滑动平均滤波器

    图  6  BER随$P$${E_{\text{b}}}/{N_0}$变化的曲线

    图  7  BER随$R$$M$变化的曲线

    图  8  不同$R$下,BER随${E_{\text{b}}}/{N_0}$变化的曲线

    图  9  不同${E_{\text{b}}}/{N_0}$下,BER随$M$变化的曲线

    图  10  不同$P$下,BER随${E_{\text{b}}}/{N_0}$变化的曲线

    图  11  不同$L$的不同信道增益下,BER随${E_{\text{b}}}/{N_0}$变化的曲线

    图  12  不同$M$下,ECO-NS-MDCSK系统与其他多进制系统的BER对比

    图  13  不同系统的综合效用函数对比

    表  1  ECO-NS-MDCSK系统的映射规则(M=4)

    二进制比特(${b_1},{b_2}$)传输系数(${a_{1,1}},{a_{2,1}},{a_{3,1}},{a_{4,1}}$)
    0 01 0 0 0
    0 10 1 0 0
    1 00 0 1 0
    1 10 0 0 1
    下载: 导出CSV

    表  2  信道增益取值表

    $L$情况1下的$E[\lambda _l^2]$情况2下的$E[\lambda _l^2]$
    $L = 2$1/2,1/21/11,10/11
    $L = 3$1/3,1/3,1/31/111,10/111,100/111
    下载: 导出CSV
  • [1] 陈志刚, 梁涤青, 邓小鸿, 等. Logistic混沌映射性能分析与改进[J]. 电子与信息学报, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039

    CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039
    [2] CHEN Zuwei, ZHANG Lin, WU Zhiqiang, et al. Reliable and efficient sparse code spreading aided MC-DCSK transceiver design for multiuser transmissions[J]. IEEE Transactions on Communications, 2021, 69(3): 1480–1495. doi: 10.1109/TCOMM.2020.3040422
    [3] XU Weikai, HUANG Tingting, and WANG Lin. Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4285–4294. doi: 10.1109/TCOMM.2017.2725261
    [4] CHENG Guixian, WANG Lin, XU Weikai, et al. Carrier index differential chaos shift keying modulation[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(8): 907–911. doi: 10.1109/TCSII.2016.2613093
    [5] YE Lifen, CHEN Guanrong, and WANG Lin. Essence and advantages of FM-DCSK versus conventional spread-spectrum communication methods[J]. Circuits, Systems and Signal Processing, 2005, 24(5): 657–673. doi: 10.1007/s00034-005-2413-8
    [6] KADDOUM G. Wireless chaos-based communication systems: A comprehensive survey[J]. IEEE Access, 2016, 4: 2621–2648. doi: 10.1109/ACCESS.2016.2572730
    [7] HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108
    [8] 蒋国平, 杨华, 段俊毅. 混沌数字调制技术研究进展[J]. 南京邮电大学学报:自然科学版, 2016, 36(1): 1–7. doi: 10.14132/j.cnki.1673-5439.2016.01.001

    JIANG Guoping, YANG Hua, and DUAN Junyi. Research progress on chaotic digital modulation technologies[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition, 2016, 36(1): 1–7. doi: 10.14132/j.cnki.1673-5439.2016.01.001
    [9] KOLUMBAN G, KENNEDY M P, JAKO Z, et al. Chaotic communications with correlator receivers: Theory and performance limits[J]. Proceedings of the IEEE, 2002, 90(5): 711–732. doi: 10.1109/JPROC.2002.1015003
    [10] Sushchik M, Tsimring L S, Volkovskii A R. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1684–1691. doi: 10.1109/81.899920
    [11] KADDOUM G and GAGNON F. Performance analysis of STBC-CSK communication system over slow fading channel[J]. Signal Processing, 2013, 93(7): 2055–2060. doi: 10.1016/j.sigpro.2012.12.020
    [12] QUYEN N X, DUONG T Q, and NALLANATHAN A. Modelling, analysis and performance comparison of two direct sampling DCSK receivers under frequency non-selective fading channels[J]. IET Communications, 2016, 10(11): 1263–1272. doi: 10.1049/iet-com.2015.1103
    [13] HUANG Tingting, CHEN Wenyu, YANG Dongliang, et al. Design and performance analysis of multicarrier M-ary differential chaos shift keying system[C]. 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT), Xiamen, China, 2021: 211–214.
    [14] 夏磊, 杨华, 宋玉蓉. 多用户载波索引差分混沌移位键控通信系统及性能分析[J]. 计算机工程, 2021, 47(5): 181–188. doi: 10.19678/j.issn.1000-3428.0057946

    XIA Lei, YANG Hua, and SONG Yurong. Multi-user carrier index differential chaos shift keying communication system and performance analysis[J]. Computer Engineering, 2021, 47(5): 181–188. doi: 10.19678/j.issn.1000-3428.0057946
    [15] CAI Xiangming, XU Weikai, HONG Shaohua, et al. A trinal-code shifted differential chaos shift keying system[J]. IEEE Communications Letters, 2021, 25(3): 1000–1004. doi: 10.1109/LCOMM.2020.3041460
    [16] YANG Hua, TANG W K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
    [17] TIAN Dongping and SHI Zhongzhi. MPSO: Modified particle swarm optimization and its applications[J]. Swarm and Evolutionary Computation, 2018, 41: 49–68. doi: 10.1016/j.swevo.2018.01.011
    [18] 张刚, 和华杰, 张鹏. 基于施密特正交化的降噪多载波相关延迟键控混沌通信系统[J]. 电子与信息学报, 2021, 43(7): 1930–1938. doi: 10.11999/JEIT200165

    ZHANG Gang, HE Huajie, and ZHANG Peng. NR-MC-CDSK chaotic communication system based on schmidt orthogonalization[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1930–1938. doi: 10.11999/JEIT200165
    [19] 贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(10): 2445–2453. doi: 10.11999/JEIT190778

    HE Lifang, WU Xueshuang, and ZHANG Tianqi. Performance analysis of orthogonal multiuser short reference differential chaos shift keying communication system[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2445–2453. doi: 10.11999/JEIT190778
    [20] ZHANG Gang, DONG Jiangtao, and HE Lifang. A noise reduction orthogonal multi-user CDSK communication system based on frequency domain processing[J]. Annals of Telecommunications, 2022, 77(3): 237–250. doi: 10.1007/s12243-021-00873-9
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  114
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-05-20
  • 录用日期:  2022-06-08
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回