Expanded Capacity Orthogonal Noise Suppression Multi-level Differential Chaotic Shift Keying Communication System
-
摘要: 针对多进制差分混沌移位键控系统传输速率较小且误码率(BER)较差的缺点,该文提出一种扩容型正交抑噪多进差分混沌移位键控(DCSK)通信系统。在该系统的发送端设计了一种改进型混沌基信号发生器,可产生4组正交的混沌基信号,使得通信容量极大提升。定义综合效用函数,并引入粒子群算法对系统各参数优化。对该系统在加性高斯白噪声(AWGN)和Rayleigh衰落信道下理论误码率公式进行推导及系统仿真同时对比不同系统的综合效用函数。结果表明,该系统具有更低的误码率和更优综合效用,具有较好的实际应用价值。Abstract: To address the disadvantages of small transmission rate and poor Bit Error Rate (BER) of M-ary differential chaos shift keying. An expanded capacity orthogonal noise suppression multi-level Differential Chaotic Shift Keying (DCSK) communication system is proposed. An improved orthogonal chaotic signal generator is designed at the transmitter of the system. It can generate four sets of orthogonal chaos-based signals, which can greatly increase the communication capacity. An integrated utility function is defined and a particle swarm algorithm is introduced to optimize each parameter of the system. The theoretical BER equation is derived and the system simulation is analyzed under the Additive White Gaussian Noise (AWGN) channel and Rayleigh fading channel. The integrated utility functions of different systems are also compared. The results show that the system has a lower BER and better integrated utility compared, and has a better practical application.
-
表 1 ECO-NS-MDCSK系统的映射规则(M=4)
二进制比特(b1,b2) 传输系数(a1,1,a2,1,a3,1,a4,1) 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 表 2 信道增益取值表
L 情况1下的E[λ2l] 情况2下的E[λ2l] L=2 1/2,1/2 1/11,10/11 L=3 1/3,1/3,1/3 1/111,10/111,100/111 -
[1] 陈志刚, 梁涤青, 邓小鸿, 等. Logistic混沌映射性能分析与改进[J]. 电子与信息学报, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039 [2] CHEN Zuwei, ZHANG Lin, WU Zhiqiang, et al. Reliable and efficient sparse code spreading aided MC-DCSK transceiver design for multiuser transmissions[J]. IEEE Transactions on Communications, 2021, 69(3): 1480–1495. doi: 10.1109/TCOMM.2020.3040422 [3] XU Weikai, HUANG Tingting, and WANG Lin. Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4285–4294. doi: 10.1109/TCOMM.2017.2725261 [4] CHENG Guixian, WANG Lin, XU Weikai, et al. Carrier index differential chaos shift keying modulation[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(8): 907–911. doi: 10.1109/TCSII.2016.2613093 [5] YE Lifen, CHEN Guanrong, and WANG Lin. Essence and advantages of FM-DCSK versus conventional spread-spectrum communication methods[J]. Circuits, Systems and Signal Processing, 2005, 24(5): 657–673. doi: 10.1007/s00034-005-2413-8 [6] KADDOUM G. Wireless chaos-based communication systems: A comprehensive survey[J]. IEEE Access, 2016, 4: 2621–2648. doi: 10.1109/ACCESS.2016.2572730 [7] HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108 [8] 蒋国平, 杨华, 段俊毅. 混沌数字调制技术研究进展[J]. 南京邮电大学学报:自然科学版, 2016, 36(1): 1–7. doi: 10.14132/j.cnki.1673-5439.2016.01.001JIANG Guoping, YANG Hua, and DUAN Junyi. Research progress on chaotic digital modulation technologies[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition, 2016, 36(1): 1–7. doi: 10.14132/j.cnki.1673-5439.2016.01.001 [9] KOLUMBAN G, KENNEDY M P, JAKO Z, et al. Chaotic communications with correlator receivers: Theory and performance limits[J]. Proceedings of the IEEE, 2002, 90(5): 711–732. doi: 10.1109/JPROC.2002.1015003 [10] Sushchik M, Tsimring L S, Volkovskii A R. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1684–1691. doi: 10.1109/81.899920 [11] KADDOUM G and GAGNON F. Performance analysis of STBC-CSK communication system over slow fading channel[J]. Signal Processing, 2013, 93(7): 2055–2060. doi: 10.1016/j.sigpro.2012.12.020 [12] QUYEN N X, DUONG T Q, and NALLANATHAN A. Modelling, analysis and performance comparison of two direct sampling DCSK receivers under frequency non-selective fading channels[J]. IET Communications, 2016, 10(11): 1263–1272. doi: 10.1049/iet-com.2015.1103 [13] HUANG Tingting, CHEN Wenyu, YANG Dongliang, et al. Design and performance analysis of multicarrier M-ary differential chaos shift keying system[C]. 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT), Xiamen, China, 2021: 211–214. [14] 夏磊, 杨华, 宋玉蓉. 多用户载波索引差分混沌移位键控通信系统及性能分析[J]. 计算机工程, 2021, 47(5): 181–188. doi: 10.19678/j.issn.1000-3428.0057946XIA Lei, YANG Hua, and SONG Yurong. Multi-user carrier index differential chaos shift keying communication system and performance analysis[J]. Computer Engineering, 2021, 47(5): 181–188. doi: 10.19678/j.issn.1000-3428.0057946 [15] CAI Xiangming, XU Weikai, HONG Shaohua, et al. A trinal-code shifted differential chaos shift keying system[J]. IEEE Communications Letters, 2021, 25(3): 1000–1004. doi: 10.1109/LCOMM.2020.3041460 [16] YANG Hua, TANG W K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622 [17] TIAN Dongping and SHI Zhongzhi. MPSO: Modified particle swarm optimization and its applications[J]. Swarm and Evolutionary Computation, 2018, 41: 49–68. doi: 10.1016/j.swevo.2018.01.011 [18] 张刚, 和华杰, 张鹏. 基于施密特正交化的降噪多载波相关延迟键控混沌通信系统[J]. 电子与信息学报, 2021, 43(7): 1930–1938. doi: 10.11999/JEIT200165ZHANG Gang, HE Huajie, and ZHANG Peng. NR-MC-CDSK chaotic communication system based on schmidt orthogonalization[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1930–1938. doi: 10.11999/JEIT200165 [19] 贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(10): 2445–2453. doi: 10.11999/JEIT190778HE Lifang, WU Xueshuang, and ZHANG Tianqi. Performance analysis of orthogonal multiuser short reference differential chaos shift keying communication system[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2445–2453. doi: 10.11999/JEIT190778 [20] ZHANG Gang, DONG Jiangtao, and HE Lifang. A noise reduction orthogonal multi-user CDSK communication system based on frequency domain processing[J]. Annals of Telecommunications, 2022, 77(3): 237–250. doi: 10.1007/s12243-021-00873-9 期刊类型引用(17)
1. 孙志国,王程,王震铎,宁晓燕. 高速切换场景下的双门限判决算法研究. 哈尔滨工程大学学报. 2024(06): 1196-1201 . 百度学术
2. 王瑞峰,范文静. 基于改进灰色-马尔可夫模型的LTE-R越区切换算法. 重庆大学学报. 2023(07): 44-52 . 百度学术
3. 李翠然,张泽鹏,谢健骊. 基于LSTM动态波束赋形的高速列车越区切换算法. 铁道学报. 2023(10): 78-86 . 百度学术
4. 张佳健,李翠然,谢健骊. 位置功率联合判决的高铁通信越区切换算法. 计算机工程. 2022(10): 212-217 . 百度学术
5. 钟华,牛宏侠,李翔宇. 基于信号接收功率与波束赋形辅助的切换算法. 科技创新与应用. 2020(13): 11-14 . 百度学术
6. 李勇,顾晓峻,徐中亮. CBTC系统在无线干扰下的平稳运行措施. 铁道通信信号. 2020(09): 68-71 . 百度学术
7. 温强,李积英,杨永红,王磊. 基于灰色预测的LTE-R越区切换算法. 激光与光电子学进展. 2020(19): 63-71 . 百度学术
8. 陈永刚,杜涛,王攀琦,戴乾军. 基于功率-距离的LTE-R切换算法优化研究. 重庆邮电大学学报(自然科学版). 2019(01): 57-64 . 百度学术
9. 张凌峰. 一种基于速率阀值触发的智能切换算法. 科技视界. 2019(14): 98-100 . 百度学术
10. 丁青锋,王丽姚. 高速场景下基于位置信息的切换优化算法. 计算机工程与应用. 2019(16): 64-69 . 百度学术
11. 王瑞峰,席皓哲,姚军娟,吝天锁,郭博迪,臧浩月. 基于位置信息与波束赋形辅助的LTE-R切换算法研究. 云南大学学报(自然科学版). 2019(06): 1137-1143 . 百度学术
12. 张雁鹏,党建武,林俊亭. 基于IEEE 802.11ac标准的城市轨道交通CBTC系统切换算法. 兰州交通大学学报. 2018(01): 57-64 . 百度学术
13. 陈鹏,米根锁,罗淼. 高速铁路LTE-R改进切换算法的研究. 铁道标准设计. 2018(05): 150-154 . 百度学术
14. 凌启东,张雷,王鸿磊,王博. 高铁环境下LTE-R快速切换算法. 计算机工程与设计. 2018(11): 3333-3339 . 百度学术
15. 陈攀,胡照文,廖聪维,罗衡,邓联文. 基于车载数据库协同触发的高铁LTE-R切换算法. 应用科学学报. 2018(06): 925-935 . 百度学术
16. 陈永刚,李德威,张彩珍. 一种基于速度的LTE-R越区切换优化算法. 铁道学报. 2017(07): 67-72 . 百度学术
17. 李德威,陈永刚. 基于速度动态函的LTE-R越区切换优化算法. 铁道标准设计. 2016(11): 143-147 . 百度学术
其他类型引用(21)
-