[1] |
SATYANARAYANAN M, BAHL P, CACERES R, et al. The case for VM-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009, 8(4): 14–23. doi: 10.1109/MPRV.2009.82
|
[2] |
DENG Shuiguang, ZHAO Hailiang, FANG Weijia, et al. Edge intelligence: The confluence of edge computing and artificial intelligence[J]. IEEE Internet of Things Journal, 2020, 7(8): 7457–7469. doi: 10.1109/JIOT.2020.2984887
|
[3] |
ZHOU Zhi, CHEN Xu, LI En, et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738–1762. doi: 10.1109/JPROC.2019.2918951
|
[4] |
PELTONEN E, BENNIS M, CAPOBIANCO M, et al. 6G white paper on edge intelligence[J]. arXiv preprint arXiv: 2004.14850, 2020.
|
[5] |
朱卫国. 城市轨道交通综述[J]. 城市车辆, 2001(3): 37–40.ZHU Weiguo. An overview of urban rail transportation[J]. Urban Vehicles, 2001(3): 37–40.
|
[6] |
张殿业, 金键, 杨京帅. 城市轨道交通安全研究体系[J]. 都市快轨交通, 2004, 17(4): 1–3. doi: 10.3969/j.issn.1672-6073.2004.04.001ZHANG Dianye, JIN Jian, and YANG Jingshuai. The safety research system of urban rail transit[J]. Urban Rapid Rail Transit, 2004, 17(4): 1–3. doi: 10.3969/j.issn.1672-6073.2004.04.001
|
[7] |
史天运. 中国高速铁路信息化现状及智能化发展[J]. 科技导报, 2019, 37(6): 53–59.SHI Tianyun. Present situation of wide applications of information and intelligence in the field of high-speed railway in China[J]. Science &Technology Review, 2019, 37(6): 53–59.
|
[8] |
王同军. 智能铁路总体架构与发展展望[J]. 铁路计算机应用, 2018, 27(7): 1–8. doi: 10.3969/j.issn.1005-8451.2018.07.003WANG Tongjun. Overall framework and development prospect of intelligent railway[J]. Railway Computer Application, 2018, 27(7): 1–8. doi: 10.3969/j.issn.1005-8451.2018.07.003
|
[9] |
刘芽, 刘占英, 麻永华, 等. 基于云计算技术的城市轨道交通信息化平台发展探索[J]. 现代城市轨道交通, 2019(9): 121–125.LIU Ya, LIU Zhanying, MA Yonghua, et al. Exploration on development of urban rail transit informatization platform based on cloud computing technology[J]. Modern Urban Transit, 2019(9): 121–125.
|
[10] |
张春杰, 武智博, 张硕桐. 物联网及人工智能技术在城市轨道交通综合监控系统中的应用探究[J]. 电子世界, 2020(7): 55–56. doi: 10.19353/j.cnki.dzsj.2020.07.029ZHANG Chunjie, WU Zhibo, and ZHANG Shuotong. Exploring the application of Internet of things and artificial intelligence technology in urban rail transit integrated monitoring system[J]. Electronics World, 2020(7): 55–56. doi: 10.19353/j.cnki.dzsj.2020.07.029
|
[11] |
魏秀琨, 所达, 魏德华, 等. 机器视觉在轨道交通系统状态检测中的应用综述[J]. 控制与决策, 2021, 36(2): 257–282. doi: 10.13195/j.kzyjc.2020.1199WEI Xiukun, SUO Da, WEI Dehua, et al. A survey of the application of machine vision in rail transit system inspection[J]. Control and Decision, 2021, 36(2): 257–282. doi: 10.13195/j.kzyjc.2020.1199
|
[12] |
周超, 林湛, 李樊, 等. 城市轨道交通视频监控系统云边协同技术应用研究[J]. 铁道运输与经济, 2020, 42(12): 106–110,125. doi: 10.16668/j.cnki.issn.1003-1421.2020.12.18ZHOU Chao, LIN Zhan, LI Fan, et al. Cloud-edge collaboration technology of CCTV system for urban rail transit[J]. Railway Transport and Economy, 2020, 42(12): 106–110,125. doi: 10.16668/j.cnki.issn.1003-1421.2020.12.18
|
[13] |
施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907–924. doi: 10.7544/issn1000-1239.2017.20160941SHI Weisong, SUN Hui, CAO Jie, et al. Edge computing-an emerging computing model for the internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907–924. doi: 10.7544/issn1000-1239.2017.20160941
|
[14] |
O'LEARY D E. Artificial intelligence and big data[J]. IEEE Intelligent Systems, 2013, 28(2): 96–99. doi: 10.1109/MIS.2013.39
|
[15] |
ZHU LI, YU F R, WANG Yige, et al. Big data analytics in intelligent transportation systems: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 383–398. doi: 10.1109/TITS.2018.2815678
|
[16] |
MICHALSKI R S, CARBONELL J G, and MITCHELL T M. Machine Learning: An Artificial Intelligence Approach[M]. Berlin: Springer Science & Business Media, 2013.
|
[17] |
MENG Yan and LIU Xiyu. Application of K-means algorithm based on ant clustering algorithm in macroscopic planning of highway transportation hub[C]. 2007 First IEEE International Symposium on Information Technologies and Applications in Education, Kunming, China, 2007: 483–488.
|
[18] |
NATH R P D, LEE H J, CHOWDHURY N K, et al. Modified K-means clustering for travel time prediction based on historical traffic data[C]. 14th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Cardiff, UK, 2010: 511–521.
|
[19] |
HAYDARI A and YILMAZ Y. Deep reinforcement learning for intelligent transportation systems: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 11–32. doi: 10.1109/TITS.2020.3008612
|
[20] |
ABDULJABBAR R, DIA H, LIYANAGE S, et al. Applications of artificial intelligence in transport: An overview[J]. Sustainability, 2019, 11(1): 189. doi: 10.3390/su11010189
|
[21] |
LECUN Y and RANZATO M. Deep learning tutorial[C]. Tutorials in International Conference on Machine Learning (ICML’13), Atlanta, USA, 2013: 1–29.
|
[22] |
ATZORI L, IERA A, and MORABITO G. The internet of things: A survey[J]. Computer Networks, 2010, 54(15): 2787–2805. doi: 10.1016/j.comnet.2010.05.010
|
[23] |
OUGHTON E J, LEHR W, KATSAROS K, et al. Revisiting wireless internet connectivity: 5G vs Wi-Fi 6[J]. Telecommunications Policy, 2021, 45(5): 102127. doi: 10.1016/j.telpol.2021.102127
|
[24] |
CHEN Xu, JIAO Lei, LI Wenzhong, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 2795–2808. doi: 10.1109/TNET.2015.2487344
|
[25] |
KAI Caihong, ZHOU Hao, YI Yibo, et al. Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication capability[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 624–634. doi: 10.1109/TCCN.2020.3018159
|
[26] |
LI En, ZHOU Zhi, and CHEN Xu. Edge intelligence: On-demand deep learning model co-inference with device-edge synergy[C]. The 2018 Workshop on Mobile Edge Communications, Budapest, Hungary: ACM, 2018: 31–36.
|
[27] |
HAN Song, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 1135–1143.
|
[28] |
LI Song, ZHAO Hongli, and MA Jinmin. An edge computing-enabled train obstacle detection method based on YOLOv3[J]. Wireless Communications and Mobile Computing, 2021, 2021: 7670724. doi: 10.1155/2021/7670724
|
[29] |
TANG Jie, LIU Shaoshan, LIU Liangkai, et al. LoPECS: A low-power edge computing system for real-time autonomous driving services[J]. IEEE Access, 2020, 8: 30467–30479. doi: 10.1109/ACCESS.2020.2970728
|
[30] |
DAI Yueyue, XU Du, MAHARJAN S, et al. Joint load balancing and offloading in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4377–4387. doi: 10.1109/JIOT.2018.2876298
|
[31] |
GARCIA M H C, MOLINA-GALAN A, BOBAN M, et al. A tutorial on 5G NR V2X communications[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1972–2026. doi: 10.1109/COMST.2021.3057017
|
[32] |
李迎九. 智能建造技术在铁路建设管理中的应用探索[J]. 中国铁路, 2018(5): 1–7. doi: 10.19549/j.issn.1001-683x.2018.05.001LI Yingjiu. The application of intelligent building technology in railway construction management[J]. China Railway, 2018(5): 1–7. doi: 10.19549/j.issn.1001-683x.2018.05.001
|
[33] |
李得伟, 张天宇, 周玮腾, 等. 轨道交通大数据运用现状及发展趋势研究[J]. 都市快轨交通, 2016, 29(6): 1–7. doi: 10.3969/j.issn.1672-6073.2016.06.001LI Dewei, ZHANG Tianyu, ZHOU Weiteng, et al. State-of-the-art and trend analysis of big data application in rail transit[J]. Urban Rapid Rail Transit, 2016, 29(6): 1–7. doi: 10.3969/j.issn.1672-6073.2016.06.001
|
[34] |
端嘉盈, 沈海燕, 李智. 边缘计算在铁路“智能车站”物联网中的应用研究[J]. 物联网技术, 2020, 10(10): 53–56,61. doi: 10.16667/j.issn.2095-1302.2020.10.015DUAN Jiaying, SHEN Haiyan, and LI Zhi. Application research of edge computing in railway "smart station" internet of things[J]. Internet of Things Technologies, 2020, 10(10): 53–56,61. doi: 10.16667/j.issn.2095-1302.2020.10.015
|
[35] |
王悉. 基于机器学习的重载列车智能驾驶方法研究[D]. [博士论文], 北京交通大学, 2017.WANG Xi. Machine learning based intelligent operation methods for heavy haul train[D]. [Ph. D. dissertation], Beijing Jiaotong University, 2017.
|