高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种分布式发电功率时间序列波动性量化评估方法

陈晨 袁绍军 尹兆磊 贺晓红 杨慢慢 李润鑫

陈晨, 袁绍军, 尹兆磊, 贺晓红, 杨慢慢, 李润鑫. 一种分布式发电功率时间序列波动性量化评估方法[J]. 电子与信息学报, 2022, 44(11): 3825-3832. doi: 10.11999/JEIT220096
引用本文: 陈晨, 袁绍军, 尹兆磊, 贺晓红, 杨慢慢, 李润鑫. 一种分布式发电功率时间序列波动性量化评估方法[J]. 电子与信息学报, 2022, 44(11): 3825-3832. doi: 10.11999/JEIT220096
CHEN Chen, YUAN Shaojun, YIN Zhaolei, HE Xiaohong, YANG Manman, LI Runxin. A Fluctuation Quantitative Evaluation Method for Distributed Energy Power Time Series[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3825-3832. doi: 10.11999/JEIT220096
Citation: CHEN Chen, YUAN Shaojun, YIN Zhaolei, HE Xiaohong, YANG Manman, LI Runxin. A Fluctuation Quantitative Evaluation Method for Distributed Energy Power Time Series[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3825-3832. doi: 10.11999/JEIT220096

一种分布式发电功率时间序列波动性量化评估方法

doi: 10.11999/JEIT220096
详细信息
    作者简介:

    陈晨:男,工程师,研究方向为电网运行方式及分布式电源管理

    袁绍军:男,高级工程师,研究方向为电网调度及新能源运行管理

    尹兆磊:男,工程师,研究方向为电网运行方式及新能源管理

    贺晓红:女,高级工程师,研究方向为电网运行

    杨慢慢:女,高级工程师,研究方向为无功电压管理

    李润鑫:男,高级工程师,研究方向为电网调度运行

    通讯作者:

    尹兆磊 cdgrid@163.com

  • 中图分类号: TM614

A Fluctuation Quantitative Evaluation Method for Distributed Energy Power Time Series

  • 摘要: 未来智能电网将接纳越来越多的分布式能源,而分布式能源的广泛接入具有提高系统的能源效率、经济性、韧性以及可持续性的潜力。然而,以风力发电和光伏发电为主的分布式能源由于其固有的波动特性,在大规模接入电网时会给系统带来诸多问题。因此,定量刻画分布式发电功率的波动性对于现代电力系统而言至关重要。基于此,该文借助时间窗、包络线和勒贝格积分,通过提取分布式发电功率中高频信息和变化趋势的波动性特征,定义了量化分布式发电功率波动性的指标——波动率。通过检验风电功率时间序列的波动性、验证平滑效应以及与预测误差和已有指标进行对比分析,验证了所提出的波动率在衡量分布式发电功率波动性的有效性。
  • 图  1  不同时间序列及其上下包络线

    图  2  波动性不同的风电功率时间序列

    图  3  风电功率时间序列ab在不同l选取下r的变化

    图  4  风力机汇聚出力下的r

    图  5  高频波动基本相同但变化趋势波动不同的风电功率时间序列ef

    表  1  序列ab的不同波动性衡量指标值和预测RMES

    序列波动率r文献[17]指标文献[18]指标文献[19]指标持续预测法(%)ARMA预测法(%)
    a0.00610.01050.00190.641415.4112.23
    b0.03730.04620.00851.618322.6217.48
    下载: 导出CSV

    表  2  不同装机容量和时间长度下风电功率时间序列的波动性对比验证

    cd
    本文r0.03420.0095
    文献[17] r0.03830.0144
    文献[18] r0.00780.0023
    文献[19] r1.53720.8590
    持续预测法RMSE(%)21.3216.58
    ARMA预测法RMSE(%)16.8614.17
    文献[13]预测法RMSE(%)11.508.76
    文献[25]预测法RMSE(%)15.439.89
    文献[26]预测法RMSE(%)12.718.84
    下载: 导出CSV

    表  3  两个风电功率时间序列的不同波动性衡量指标对比

    ef
    本文${r_1}$值0.04040.0397
    本文${r_2}$值0.02700.0601
    本文r0.03050.0499
    文献[17] r0.03240.0308
    文献[18] r0.00740.0065
    持续预测法RMSE(%)20.4122.33
    ARMA预测法RMSE(%)14.2818.94
    文献[13]预测法RMSE(%)10.0713.04
    文献[25]预测法RMSE(%)14.1316.33
    文献[26]预测法RMSE(%)11.7714.90
    下载: 导出CSV
  • [1] CHEN Yulin, QI Donglian, DONG Hangning, et al. A FDI attack-resilient distributed secondary control strategy for islanded microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(3): 1929–1938. doi: 10.1109/TSG.2020.3047949
    [2] ACKERMANN T. Wind power in power systems[J]. IEEE Power Engineering Review, 2013, 22(12): 23–27.
    [3] CHEN Yulin, LI Chaoyong, QI Donglian, et al. Distributed event-triggered secondary control for islanded microgrids with proper trigger condition checking period[J]. IEEE Transactions on Smart Grid, 2022, 13(2): 837–848. doi: 10.1109/TSG.2021.3115180
    [4] 李俊, 王振宇, 向洁. 分布式蓄热电锅炉对弃风电量的消纳能力评估[J]. 电力科学与技术学报, 2021, 36(1): 185–191. doi: 10.19781/j.issn.1673-9140.2021.01.021

    LI Jun, WANG Zhenyu, and XIANG Jie. Study on ability of distributed electric boilers with thermal storage in abandoned wind power consumption[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 185–191. doi: 10.19781/j.issn.1673-9140.2021.01.021
    [5] WANG Jiangfeng, SUN Kai, WU Hongfei, et al. Hybrid connected unified power quality conditioner integrating distributed generation with reduced power capacity and enhanced conversion efficiency[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12340–12352. doi: 10.1109/TIE.2020.3040687
    [6] 肖创英, 汪宁渤, 陟晶, 等. 甘肃酒泉风电出力特性分析[J]. 电力系统自动化, 2010, 34(17): 64–67.

    XIAO Ghuangying, WANG Ningbo, ZHI Jing, et al. Power characteristics of Jiuquan wind power base[J]. Automation of Electric Power Systems, 2010, 34(17): 64–67.
    [7] 林卫星, 文劲宇, 艾小猛, 等. 风电功率波动特性的概率分布研究[J]. 中国电机工程学报, 2012, 32(1): 38–46. doi: 10.13334/j.0258-8013.pcsee.2012.01.010

    LIN Weixing, WEN Jinyu, AI Xiaomeng, et al. Probability density function of wind power variations[J]. Proceedings of the CSEE, 2012, 32(1): 38–46. doi: 10.13334/j.0258-8013.pcsee.2012.01.010
    [8] 张宁宇, 周前, 刘建坤. 江苏海上、沿海和内陆风电出力及波动特性分析[J]. 中国电力, 2020, 53(7): 18–23.

    ZHANG Ningyu, ZHOU Qian, and LIU Jiankun. Output and fluctuation characteristics of off-shore, coastal and inland wind farms in Jiangsu province[J]. Electric Power, 2020, 53(7): 18–23.
    [9] 崔杨, 穆钢, 刘玉, 等. 风电功率波动的时空分布特性[J]. 电网技术, 2011, 35(2): 110–114. doi: 10.13335/j.1000-3673.pst.2011.02.017

    CUI Yang, MU Gang, LIU Yu, et al. Spatiotemporal distribution characteristic of wind power fluctuation[J]. Power System Technology, 2011, 35(2): 110–114. doi: 10.13335/j.1000-3673.pst.2011.02.017
    [10] 周统汉, 陈峦, 李坚. 基于有限混合Laplace模型的风功率波动特性研究[J]. 电网技术, 2017, 41(2): 543–550. doi: 10.13335/j.1000-3673.pst.2016.0844

    ZHOU Tonghan, CHEN Luan, and LI Jian. Wind power fluctuation characteristic analysis based on finite Laplace mixture model[J]. Power System Technology, 2017, 41(2): 543–550. doi: 10.13335/j.1000-3673.pst.2016.0844
    [11] SORENSEN P, CUTULULIS N A, VIGUERAS-RODRIGUEZ A, et al. Power fluctuations from large wind farms[J]. IEEE Transactions on Power Systems, 2007, 22(3): 958–965. doi: 10.1109/TPWRS.2007.901615
    [12] SUNDARARAJAN A and SARWAT A I. Evaluation of missing data imputation methods for an enhanced distributed PV generation prediction[C]. Proceedings of Future Technologies Conference 2019, San Francisco: USA, 2020: 56–68.
    [13] CHENG Lilin, ZANG Haixiang, XU Yan, et al. Augmented convolutional network for wind power prediction: A new recurrent architecture design with spatial-temporal image inputs[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6981–6993. doi: 10.1109/TII.2021.3063530
    [14] 杨茂, 陈郁林, 魏治成. 基于EEMD去噪和集对理论的风功率实时预测研究[J]. 太阳能学报, 2018, 39(5): 1440–1448.

    YANG Mao, CHEN Yulin, and WEI Zhicheng. Real-time prediction for wind power based on EEMD denoising and theory of spa[J]. Acta Energiae Solaris Sinica, 2018, 39(5): 1440–1448.
    [15] BANAKAR H and OOI B T. Clustering of wind farms and its sizing impact[J]. IEEE Transactions on Energy Conversion, 2009, 24(4): 935–942. doi: 10.1109/TEC.2008.2001454
    [16] YE Yida, QIAO Ying, LU Zongxiang, et al. Offshore wind power outputs in multiple temporal and spatial scales[C]. Proceedings of 2014 International Conference on Power System Technology, Chengdu, China, 2014: 2781–2787.
    [17] 杨茂, 陈郁林. 风电功率波动特性定量刻画及应用研究[J]. 太阳能学报, 2019, 40(6): 1771–1779.

    YANG Mao and CHEN Yulin. A study for quantitative characterization of wind power fluctuations and its applications[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1771–1779.
    [18] ZHOU Ziqiang, PENG Shu, CHEN Yulin, et al. Quantitative characterization of wind power fluctuation[C]. Proceedings of 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020: 3089–3094.
    [19] DAI Juchuan, CAO Junwei, LIU Deshun, et al. Power fluctuation evaluation of large-scale wind turbines based on SCADA data[J]. IET Renewable Power Generation, 2017, 11(4): 395–402. doi: 10.1049/iet-rpg.2016.0124
    [20] 钟佑明, 金涛, 秦树人. 希尔伯特-黄变换中的一种新包络线算法[J]. 数据采集与处理, 2005, 20(1): 13–17. doi: 10.3969/j.issn.1004-9037.2005.01.003

    ZHONG Youming, JIN Tao, and QIN Shuren. New envelope algorithm for Hilbert-Huang transform[J]. Journal of Data Acquisition &Processing, 2005, 20(1): 13–17. doi: 10.3969/j.issn.1004-9037.2005.01.003
    [21] 张纪平. Lebesgue积分迫敛性定理及其应用[J]. 黑河学院学报 2013, 4(5): 117–118.

    ZHANG Jiping. Lebesgue squeeze theorem and its applications[J]. Journal of Heihe University, 2013, 33(5): 117–118.
    [22] 李丽, 叶林. 基于改进持续法的短期风电功率预测[J]. 农业工程学报, 2010, 26(12): 182–187. doi: 10.3969/j.issn.1002-6819.2010.12.031

    LI Li and YE Lin. Short-term wind power forecasting based on an improved persistence approach[J]. Transactions of the CSAE, 2010, 26(12): 182–187. doi: 10.3969/j.issn.1002-6819.2010.12.031
    [23] 刘帅, 朱永利, 张科, 等. 基于误差修正ARMA-GARCH模型的短期风电功率预测[J]. 太阳能学报, 2020, 41(10): 268–275.

    LIU Shuai, ZHU Yongli, ZHANG Ke, et al. Short-term wind power forecasting based on error correction ARMA-GARCH model[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 268–275.
    [24] YANG Mao, ZHANG Luobin, CUI Yang, et al. Investigating the wind power smoothing effect using set pair analysis[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1161–1172. doi: 10.1109/TSTE.2019.2920255
    [25] 杨茂, 陈郁林. 基于EMD分解和集对分析的风电功率实时预测[J]. 电工技术学报, 2016, 31(21): 86–93. doi: 10.19595/j.cnki.1000-6753.tces.2016.21.010

    YANG Mao and CHEN Yulin. Real-time prediction for wind power based on EMD and set pair analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 86–93. doi: 10.19595/j.cnki.1000-6753.tces.2016.21.010
    [26] 李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200–205. doi: 10.19912/j.0254-0096.tynxb.2019-1464

    LI Dazhong and LI Yingyu. Ultra-short-term wind power prediction based on deep learning and error correction[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 200–205. doi: 10.19912/j.0254-0096.tynxb.2019-1464
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  349
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-03-17
  • 网络出版日期:  2022-06-25
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回