Research and Experimental Verification of Reconfigurable Intelligent Surface in Indoor Coverage Enhancement
-
摘要: 智能超表面(RIS)通过打造可重构主动智能无线环境,打破了无线通信系统中被动电波传播的局限性,为5G-Adv和6G发展创造了新的契机。该文介绍了RIS系统架构与工作原理,包括硬件设计与波束聚合原理等。搭建了RIS辅助的无线通信实验测试系统,通过对比无RIS、随机码本RIS及赋形码本RIS 3种情况下的测试结果,验证了RIS通过反射波束赋形实现覆盖增强的能力。Abstract: Reconfigurable Intelligent Surface (RIS) breaks technological limitations of traditional wireless communication systems, it creates new opportunities for development of 5G-Adv and 6G by introducing reconfigurable communication environment. RIS system architecture and working principle are introduced in detail, including hardware design and beamforming method. RIS assisted wireless communication system is introduced in-depth, received signal gain and system performance are analyzed in details. Combined with indoor test, beamforming ability of RIS is verified.
-
表 1 RIS相关参数
参数 取值 可调信号频率范围(GHz) 2.515~2.675 可调俯仰角度范围 ±60° 可调方位角度范围 ±60° 波束宽度 E面:7°,H面:3.5° 码本更新率(s) 0.01 表 2 室内场景实验参数
参数 取值 信号频率(GHz) 2.64 入射角度 30° \ 60° 出射角度 60° \ 30° 发射端距离(m) 6 接收端距离(m) 13.2~18.0 信号带宽(MHz) 40 俯仰角 0° 天线增益(dBi) 12.5 功放增益(dBm) 35 -
[1] ZHANG Jiayi, BJÖRNSON E, MATTHAIOU M, et al. Prospective multiple antenna technologies for beyond 5G[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1637–1660. doi: 10.1109/JSAC.2020.3000826 [2] AI Bo, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE, 2020, 108(6): 856–893. doi: 10.1109/JPROC.2020.2988595 [3] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609 [4] PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528 [5] 胡浪涛, 毕松姣, 刘全金, 等. 基于强化学习的智能超表面辅助无人机通信系统物理层安全算法[J]. 电子与信息学报. 待发表.HU Langtao, BI Songjiao, LIU Quanjin, et al. Physical layer security algorithm of reconfigurable intelligent surface -assisted unmanned aerial vehicle communication system based on reinforcement learning[J]. Journal of Electronics & Information Technology. To be published. [6] TANG Wankai, CHEN Mingzheng, DAI Junyan, et al. Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design[J]. IEEE Wireless Communications, 2020, 27(2): 180–187. doi: 10.1109/MWC.001.1900308 [7] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135 [8] DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time‐domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044 [9] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055 [10] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887 [11] WANG Zipeng, TAN Li, YIN Haifan, et al. A received power model for reconfigurable intelligent surface and measurement-based validations[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2021. [12] PEI Xilong, YIN Haifan, TAN Li, et al. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials[J]. IEEE Transactions on Communications, 2021, 69(12): 8627–8640. doi: 10.1109/TCOMM.2021.3116151 [13] DAI Linglong, WANG Bichai, WANG Min, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8: 45913–45923. doi: 10.1109/ACCESS.2020.2977772 [14] 邹翔宇, 黄崇文, 徐勇军, 等. 基于深度学习的通信系统中安全能效的控制[J]. 电子与信息学报, 待发表.ZOU Xiangyu, HUANG Chongwen, XU Yongjun, et al. Secure energy efficiency in communication systems based on deep learning[J]. Journal of Electronics & Information Technology. To be published. [15] TRICHOPOULOS G C, THEOFANOPOULOS P, KASHYAP B, et al. Design and evaluation of reconfigurable intelligent surfaces in real-world environment[J]. IEEE Open Journal of the Communications Society, 2021, 3: 462–474. doi: 10.1109/OJCOMS.2022.3158310 [16] DUNNA M, ZHANG Chi, SIEVENPIPER D, et al. ScatterMIMO: Enabling virtual MIMO with smart surfaces[C]. Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, United Kingdom, 2020: 10. [17] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107 [18] 赵亚军, 章嘉懿, 艾渤. 智能超表面技术在智能高铁通信场景的应用探讨[J]. 中兴通讯技术, 2021, 27(4): 36–43. doi: 10.12142/ZTETJ.202104008ZHAO Yajun, ZHANG Jiayi, and AI Bo. Applications of reconfigurable intelligent surface in smart high-speed railway communications[J]. ZTE Technology Journal, 2021, 27(4): 36–43. doi: 10.12142/ZTETJ.202104008 [19] 郭雅婧, 章嘉懿, 鲁照华, 等. 面向移动用户的智能反射表面波束追踪与覆盖增强算法[J]. 中兴通讯技术, 2021, 27(2): 54–59. doi: 10.12142/ZTETJ.202102012GUO Jingya, ZHANG Jiayi, LU Zhaohua, et al. Beam tracking and coverage enhancement algorithm for mobile users with intelligent reflecting surface[J]. ZTE Technology Journal, 2021, 27(2): 54–59. doi: 10.12142/ZTETJ.202102012