高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的抗网表逆向攻击逻辑混淆方法

赵毅强 蒯钧 马浩诚 张启智 高雅 叶茂 何家骥

赵毅强, 蒯钧, 马浩诚, 张启智, 高雅, 叶茂, 何家骥. 基于遗传算法的抗网表逆向攻击逻辑混淆方法[J]. 电子与信息学报, 2023, 45(1): 96-105. doi: 10.11999/JEIT220059
引用本文: 赵毅强, 蒯钧, 马浩诚, 张启智, 高雅, 叶茂, 何家骥. 基于遗传算法的抗网表逆向攻击逻辑混淆方法[J]. 电子与信息学报, 2023, 45(1): 96-105. doi: 10.11999/JEIT220059
ZHAO Yiqiang, KUAI Jun, MA Haocheng, ZHANG Qizhi, GAO Ya, YE Mao, HE Jiaji. A Novel Logic-obfuscation Method to Resist Netlist-reverse Attack Based on Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(1): 96-105. doi: 10.11999/JEIT220059
Citation: ZHAO Yiqiang, KUAI Jun, MA Haocheng, ZHANG Qizhi, GAO Ya, YE Mao, HE Jiaji. A Novel Logic-obfuscation Method to Resist Netlist-reverse Attack Based on Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(1): 96-105. doi: 10.11999/JEIT220059

基于遗传算法的抗网表逆向攻击逻辑混淆方法

doi: 10.11999/JEIT220059
基金项目: 国家重点研发计划项目(2021YFB3100903)
详细信息
    作者简介:

    赵毅强:男,教授,研究方向为集成电路设计与安全

    蒯钧:男,硕士生,研究方向为集成电路设计与安全

    马浩诚:男,博士生,研究方向为集成电路设计与安全

    张启智:男,博士生,研究方向为集成电路设计与安全

    高雅:女,硕士生,研究方向为集成电路设计与安全

    叶茂:男,副教授,研究方向为集成电路设计与安全

    何家骥:男,副研究员,研究方向为集成电路设计与安全

    通讯作者:

    何家骥 dochejj@tju.edu.cn

  • 中图分类号: TN918

A Novel Logic-obfuscation Method to Resist Netlist-reverse Attack Based on Genetic Algorithm

Funds: The National Key Research and Development Program of China (2021YFB3100903)
  • 摘要: 随着集成电路(IC)产业进入后摩尔时代,芯片一次性工程成本愈发高昂,而以逆向工程技术为代表的知识产权窃取手段,越来越严重地威胁着芯片信息安全。为了抵抗逆向工程攻击,该文提出一种基于遗传算法的自动化逻辑混淆方法,通过分析网表寄存器的拓扑网络结构,筛选逻辑节点并创建冗余连接,从而混淆词级寄存器的相似性特征,在低开销下防止逆向攻击恢复寄存器传输级的词级变量、控制逻辑与数据通路。基于SM4国密算法基准电路开展验证实验,结果表明:经该文方法混淆后,逆向结果与设计真实情况的标准化互信息相关度下降了46%,拓扑复杂度提升61.46倍,面积额外开销为0.216%;同时相较于随机混淆,该混淆方法效率提升为2.718倍,面积额外开销降低70.8%。
  • 图  1  逻辑综合与门级网表结构

    图  2  同组寄存器相似性特征分析规则

    图  3  门级网表逆向过程

    图  4  寄存器拓扑网络提取算法

    图  5  寄存器拓扑网络与汇聚节点提取效果

    图  6  筛选混淆节点对并创建冗余连接

    图  7  混淆单元逻辑结构

    图  8  SM4国密算法电路 网表逆向分析结果

    图  9  SM4国密算法电路 抗逆向效果分析

    图  10  面积开销与混淆效率分析

    表  1  面积开销对比

    123456789
    NMI值0.950.90.850.80.750.70.650.60.55
    本文混淆方法开销13284770116139169190269
    随机混淆方法开销53575135228268579
    本文方法降低面积开销(%)20.00↓37.33↓48.15↓49.12↓48.13↓70.80↓
    下载: 导出CSV
  • [1] BAUMGARTEN A, TYAGI A, and ZAMBRENO J. Preventing IC piracy using reconfigurable logic barriers[J]. IEEE Design & Test of Computers, 2010, 27(1): 66–75. doi: 10.1109/MDT.2010.24
    [2] DUPUIS S, BA P S, DI NATALE G, et al. A novel hardware logic encryption technique for thwarting illegal overproduction and Hardware Trojans[C]. 2014 IEEE 20th International On-Line Testing Symposium (IOLTS), Platja d'Aro, Spain, 2014: 49–54.
    [3] YASIN M, MAZUMDAR B, RAJENDRAN J J V, et al. SARLock: SAT attack resistant logic locking[C]. 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, USA, 2016: 236–241.
    [4] XIE Yang and SRIVASTAVA A. Anti-SAT: Mitigating SAT attack on logic locking[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(2): 199–207. doi: 10.1109/TCAD.2018.2801220
    [5] ZHANG Jiliang. A practical logic obfuscation technique for hardware security[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(3): 1193–1197. doi: 10.1109/TVLSI.2015.2437996
    [6] CHAKRABORTY R S and BHUNIA S. HARPOON: An obfuscation-based SoC design methodology for hardware protection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(10): 1493–1502. doi: 10.1109/TCAD.2009.2028166
    [7] HU Yinghua, YANG Kaixin, NAZARIAN S, et al. SANSCrypt: A sporadic-authentication-based sequential logic encryption scheme[C]. IFIP/IEEE 28th International Conference on Very Large Scale Integration, Salt Lake City, USA, 2020: 129–134,
    [8] ZHANG Jiliang, LIN Yaping, LYU Yongqiang, et al. A PUF-FSM binding scheme for FPGA IP protection and pay-per-device licensing[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(6): 1137–1150. doi: 10.1109/TIFS.2015.2400413
    [9] 张会红, 李憬, 吴秋丰, 等. 基于多级协同混淆的硬件IP核安全防护设计[J]. 电子与信息学报, 2021, 43(9): 2458–2465. doi: 10.11999/JEIT210631

    ZHANG Huihong, LI Jing, WU Qiufeng, et al. Design of hardware IP core security protection based on multi-level co-obfuscation[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2458–2465. doi: 10.11999/JEIT210631
    [10] LI Wenchao, GASCON A, SUBRAMANYAN P, et al. WordRev: Finding word-level structures in a sea of bit-level gates[C]. 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Austin, USA, 2013: 67–74.
    [11] LI Wenchao, WASSON Z, and SESHIA S A. Reverse engineering circuits using behavioral pattern mining[C]. 2012 IEEE International Symposium on Hardware-Oriented Security and Trust, San Francisco, USA, 2012: 83–88.
    [12] SUBRAMANYAN P, TSISKARIDZE N, PASRICHA K, et al. Reverse engineering digital circuits using functional analysis[C]. 2013 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2013: 1277–1280.
    [13] SUBRAMANYAN P, TSISKARIDZE N, LI Wenchao, et al. Reverse engineering digital circuits using structural and functional analyses[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(1): 63–80. doi: 10.1109/TETC.2013.2294918
    [14] MEADE T, JIN Yier, TEHRANIPOOR M, et al. Gate-level netlist reverse engineering for hardware security: Control logic register identification[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 1334–1337.
    [15] GEIST J, MEADE T, ZHANG Shaojie, et al. RELIC-FUN: Logic identification through functional signal comparisons[C]. 2020 57th ACM/IEEE Design Automation Conference, San Francisco, USA, 2020: 1–6.
    [16] BRUNNER M, BAEHR J, and SIGL G. Improving on state register identification in sequential hardware reverse engineering[C]. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, USA, 2019: 151–160.
    [17] ALBARTUS N, HOFFMANN M, TEMME S, et al. DANA universal dataflow analysis for gate-level netlist reverse engineering[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2020(4): 309–336. doi: 10.13154/tches.v2020.i4.309-336
    [18] RAJENDRAN J, PINO Y, SINANOGLU O, et al. Security analysis of logic obfuscation[C]. The 49th Annual Design Automation Conference, San Francisco, USA, 2012: 83–89.
    [19] KASARABADA Y, CHEN Suyuan, and VEMURI R. On SAT-based attacks on encrypted sequential logic circuits[C]. 20th International Symposium on Quality Electronic Design, Santa Clara, USA, 2019: 204–211.
    [20] MEADE T, ZHANG Shaojie, and JIN Yier. Netlist reverse engineering for high-level functionality reconstruction[C]. 2016 21st Asia and South Pacific Design Automation Conference, Macao, China, 2016: 655–660.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  507
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-05-01
  • 网络出版日期:  2022-05-07
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回