[1] |
GHONGE M M, MANGRULKAR R, PJAWANDHIYA P M, et al. Future Trends in 5G and 6G: Challenges, Architecture, and Applications[M]. CRC Press, 2021.
|
[2] |
DEBBABI F, JMAL R, FOURATI L C, et al. Algorithmics and modeling aspects of network slicing in 5G and Beyonds network: Survey[J]. IEEE Access, 2020, 8: 162748–162762. doi: 10.1109/ACCESS.2020.3022162
|
[3] |
POZZA M, NICHOLSON P K, LUGONES D F, et al. On reconfiguring 5G network slices[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(7): 1542–1554. doi: 10.1109/JSAC.2020.2986898
|
[4] |
LI D F, PHONG P L, XUE K P, et al. Virtual network function placement considering resource optimization and SFC requests in cloud datacenter[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(7): 1664–1677. doi: 10.1109/TPDS.2018.2802518
|
[5] |
SCIANCALEPORE V, COSTA-PEREZ X, and BANCHS A. RL-NSB: Reinforcement learning-based 5G network slice broker[J]. IEEE/ACM Transactions on Networking, 2019, 27(4): 1543–1557. doi: 10.1109/TNET.2019.2924471
|
[6] |
XIAO Suchao and CHEN Wen. Dynamic allocation of 5G transport network slice bandwidth based on LSTM traffic prediction[C]. 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2018: 735–739.
|
[7] |
SONG Chuang, ZHANG Min, HUANG Xuetian, et al. Machine learning enabling traffic-aware dynamic slicing for 5G optical transport networks[C]. 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, 2018: 1–2.
|
[8] |
唐伦, 赵培培, 赵国繁, 等. 基于深度信念网络资源需求预测的虚拟网络功能动态迁移算法[J]. 电子与信息学报, 2019, 41(6): 1397–1404. doi: 10.11999/JEIT180666TANG Lun, ZHAO Peipei, ZHAO Guofan, et al. Virtual network function migration algorithm based on deep belief network prediction of resource requirements[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1397–1404. doi: 10.11999/JEIT180666
|
[9] |
LI Taihui, ZHU Xiaorong, and LIU Xu. An end-to-end network slicing algorithm based on deep Q-learning for 5G network[J]. IEEE Access, 2020, 8: 122229–122240. doi: 10.1109/ACCESS.2020.3006502
|
[10] |
WEI Fengsheng, FENG Gang, SUN Yao, et al. Proactive network slice reconfiguration by exploiting prediction interval and robust optimization[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6.
|
[11] |
CHERGUI H and VERIKOUKIS C. Offline SLA-constrained deep learning for 5G networks reliable and dynamic end-to-end slicing[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(2): 350–360. doi: 10.1109/JSAC.2019.2959186
|
[12] |
KAO C C, CHANG C W, CHO C P, et al. Deep learning and ensemble learning for traffic load prediction in real network[C]. 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, China, 2020: 36–39.
|
[13] |
YIN Shan, ZHANG Zhan, YANG Chen, et al. Prediction-based end-to-end dynamic network slicing in hybrid elastic fiber-wireless networks[J]. Journal of Lightwave Technology, 2021, 39(7): 1889–1899. doi: 10.1109/JLT.2020.3045600
|
[14] |
YU Hao, MUSUMECI F, ZHANG Jiawei, et al. Dynamic 5G RAN slice adjustment and migration based on traffic prediction in WDM metro-aggregation networks[J]. Journal of Optical Communications and Networking, 2020, 12(12): 403–413. doi: 10.1364/JOCN.403829
|
[15] |
Small Cell Forum. Small cell virtualization: Functional splits and use cases[R]. Technical Report of Small Cell Forum, 2016.
|