高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于水下物联网的混合地理路由协议设计

闫磊 何天恺 王易因 张榕鑫 李鑫滨

闫磊, 何天恺, 王易因, 张榕鑫, 李鑫滨. 适用于水下物联网的混合地理路由协议设计[J]. 电子与信息学报, 2022, 44(6): 1966-1973. doi: 10.11999/JEIT220048
引用本文: 闫磊, 何天恺, 王易因, 张榕鑫, 李鑫滨. 适用于水下物联网的混合地理路由协议设计[J]. 电子与信息学报, 2022, 44(6): 1966-1973. doi: 10.11999/JEIT220048
YAN Lei, HE Tiankai, WANG Yiyin, ZHANG Rongxin, LI Xinbin. Hybrid Geographical Routing Protocol for Internet of Underwater Things[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1966-1973. doi: 10.11999/JEIT220048
Citation: YAN Lei, HE Tiankai, WANG Yiyin, ZHANG Rongxin, LI Xinbin. Hybrid Geographical Routing Protocol for Internet of Underwater Things[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1966-1973. doi: 10.11999/JEIT220048

适用于水下物联网的混合地理路由协议设计

doi: 10.11999/JEIT220048
基金项目: 国家自然科学基金(41976182, 61773264, 61873224, 62131020)
详细信息
    作者简介:

    闫磊:男,1989年生,博士,讲师,研究方向为水声通信与信号处理、机器学习等

    何天恺:男,1998年生,硕士生,研究方向为水声通信与信号处理

    王易因:女,1980年生,博士,博士生导师,研究员,研究方为无线网络的信号处理、水声网络信号处理等

    张榕鑫:男,1990年生,博士,研究方向为水声通信与组网

    李鑫滨:男,1969年生,博士,博士生导师,教授,研究方向为水下无线组网与水下机器人控制

    通讯作者:

    闫磊 yanlei@qhd.neu.edu.cn

  • 中图分类号: TN929.3

Hybrid Geographical Routing Protocol for Internet of Underwater Things

Funds: The National Natural Science Foundation of China (41976182, 61773264, 61873224, 62131020)
  • 摘要: 该文针对水下物联网(IoUT)数据传输问题设计了一种混合地理路由协议。海洋环境的复杂性严重地限制了IoUT水下物联网节点间的数据传输性能,因此需要一个高效的路由协议以对抗复杂的信道环境。无状态几何路由(G-STAR)是一种采用贪婪转发模式的地理路由协议,在大多数3维物联网情景中能够找到合适的数据传输路径,然而水下环境中存在诸多不利因素制约了G-STAR的性能。对此,该文提出一个混合G-STAR(Hybrid G-STAR, H-G-STAR)协议,在保有G-STAR优势的基础上对协议在水下环境中的适应性进行了针对性设计。通过增加基于信道监听的无协作转发策略,在节点数量足够时自发地选择信道状况最佳的路径进行路由,由此避开贪婪转发在水下环境中可能遭遇的极端劣化信道。仿真结果显示H-G-STAR协议相较于基准G-STAR协议有着更好的路由性能,并且在物理层能够取得更低的误比特率(BER),在水下节点的网络拓扑中更为适用。
  • 图  1  图l l2-AUV-MN-2.0网络模型的 ICPN[4]

    图  2  H-G-STAR 协议工作流程图

    图  3  H-G-STAR 协议树搜索的探索和利用

    图  4  随机拓扑的误比特率,网络节点数为 75

    图  5  随机拓扑的误比特率,网络节点数为 150

    图  6  C 型拓扑的误比特率,网络节点数为 75

    图  7  C 型拓扑的误比特率,网络节点数为 150

    图  8  随机拓扑的送达率,TTL=10

    图  9  C 型拓扑的送达率,TTL=40

    表  1  随机拓扑的误码率

    网络密度
    4 6 11
    G-STAR0.37800.05320.0233
    H-G-STAR 0.35910.05260.0231
    GCORP0.9807 0.8453 0.5901
    下载: 导出CSV

    表  2  C型拓扑的误码率

    网络密度
    101625
    G-STAR0.40620.15650.0705
    H-G-STAR0.23250.11870.0515
    GCORP0.9811 0.9430
    下载: 导出CSV
  • [1] 徐文, 鄢社锋, 季飞, 等. 海洋信息获取、传输、处理及融合前沿研究评述[J]. 中国科学:信息科学, 2016, 46(8): 1053–1085. doi: 10.1360/N112016-00064

    XU Wen, YAN Shefeng, JI Fei, et al. Marine information gathering, transmission, processing, and fusion: Current status and future trends[J]. SCIENTIA SINICA Informationis, 2016, 46(8): 1053–1085. doi: 10.1360/N112016-00064
    [2] 瞿逢重, 来杭亮, 刘建章, 等. 海洋物联网关键技术研究与应用[J]. 电信科学, 2021, 37(7): 25–33. doi: 10.11959/j.issn.1000-0801.2021149

    QU Fengzhong, LAI Hangliang, LIU Jianzhang, et al. Research and application on key techniques of marine IoT[J]. Telecommunications Science, 2021, 37(7): 25–33. doi: 10.11959/j.issn.1000-0801.2021149
    [3] SU Yuhan, LIWANG Minghui, GAO Zhibin, et al. Optimal cooperative relaying and power control for IoUT networks with reinforcement learning[J]. IEEE Internet of Things Journal, 2021, 8(2): 791–801. doi: 10.1109/JIOT.2020.3008178
    [4] ZHANG Tongwei, YAN Lei, HAN Guangjie, et al. Fast and accurate underwater acoustic horizontal ranging algorithm for an arbitrary sound-speed profile in the deep sea[J]. IEEE Internet of Things Journal, 2021, 9(1): 755–769. doi: 10.1109/JIOT.2021.3085331
    [5] AKYILDIZ I F, POMPILI D, and MELODIA T. Underwater acoustic sensor networks: Research challenges[J]. Ad Hoc Networks, 2005, 3(3): 257–279. doi: 10.1016/j.adhoc.2005.01.004
    [6] CELIK A, SAEED N, SHIHADA B, et al. Opportunistic routing for opto-acoustic internet of underwater things[J]. IEEE Internet of Things Journal, 2022, 9(3): 2165–2179. doi: 10.1109/JIOT.2021.3090301
    [7] GUAN Quansheng, JI Fei, LIU Yun, et al. Distance-vector-based opportunistic routing for underwater acoustic sensor networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 3831–3839. doi: 10.1109/JIOT.2019.2891910
    [8] CHEN Yougan, WANG Zhaohui, WAN Lei, et al. OFDM-modulated dynamic coded cooperation in underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2015, 40(1): 159–168. doi: 10.1109/JOE.2014.2304254
    [9] CELIK A, SAEED N, SHIHADA B, et al. A software-defined opto-acoustic network architecture for internet of underwater things[J]. IEEE Communications Magazine, 2020, 58(4): 88–94. doi: 10.1109/MCOM.001.1900593
    [10] WEI Xiaohui, GUO Hao, WANG Xingwang, et al. Reliable data collection techniques in underwater wireless sensor networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 404–431. doi: 10.1109/COMST.2021.3134955
    [11] LIOU E C, KAO C C, CHANG C H, et al. Internet of underwater things: Challenges and routing protocols[C]. 2018 IEEE International Conference on Applied System Invention, Chiba, Japan, 2018: 1171–1174.
    [12] KARP B and KUNG H T. GPSR: Greedy perimeter stateless routing for wireless networks[C]. The 6th Annual International Conference on Mobile Computing and Networking, Boston, USA, 2000: 243–254.
    [13] KUHN F, WATTENHOFER R, ZHANG Yan, et al. Geometric ad-hoc routing: Of theory and practice[C]. The Twenty-Second Annual Symposium on Principles of Distributed Computing, Boston, USA, 2003: 63–72.
    [14] SUN Minte, SAKAI K, HAMILTON B R, et al. G-STAR: Geometric STAteless routing for 3-D wireless sensor networks[J]. Ad Hoc Networks, 2011, 9(3): 341–354. doi: 10.1016/j.adhoc.2010.07.013
    [15] 孙大军, 郑翠娥, 崔宏宇, 等. 水下传感器网络定位技术发展现状及若干前沿问题[J]. 中国科学:信息科学, 2018, 48(9): 1121–1136. doi: 10.1360/N112017-00262

    SUN Dajun, ZHENG Cuie, CUI Hongyu, et al. Developing status and some cutting-edge issues of underwater sensor network localization technology[J]. SCIENTIA SINICA Informationis, 2018, 48(9): 1121–1136. doi: 10.1360/N112017-00262
    [16] YAN Hai, SHI Z J, and CUI Junhong. DBR: Depth-based routing for underwater sensor networks[C]. The 7th International IFIP-TC6 Networking Conference on AdHoc and Sensor Networks, Wireless Networks, Next Generation Internet, Singapore, 2008: 72–86.
    [17] NOH Y, LEE U, LEE S, et al. HydroCast: Pressure routing for underwater sensor networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 333–347. doi: 10.1109/TVT.2015.2395434
    [18] NOH Y, LEE U, WANG P, et al. VAPR: Void-aware pressure routing for underwater sensor networks[J]. IEEE Transactions on Mobile Computing, 2013, 12(5): 895–908. doi: 10.1109/TMC.2012.53
    [19] RAMEZANI H and LEUS G. Ranging in an underwater medium with multiple isogradient sound speed profile layers[J]. Sensors, 2012, 12(3): 2996–3017. doi: 10.3390/s120302996
    [20] PREISIG J. Acoustic propagation considerations for underwater acoustic communications network development[C]. The 1st ACM International Workshop on Underwater Networks, Los Angeles, USA, 2006: 1–5.
    [21] NGUYEN S T, CAYIRCI E, YAN Liang, et al. A shadow zone aware routing protocol for tactical acoustic undersea surveillance networks[C]. 2009 IEEE Military Communications Conference, Boston, USA, 2009: 1–7.
    [22] QU F. Underwater acoustic communication and IoUT[R]. 2021.
    [23] MATHUR S, SAGARI S S, AMIN S O, et al. Demo abstract: CDMA-based IoT services with shared band operation of LTE in 5G[C]. 2017 IEEE Conference on Computer Communications Workshops, Atlanta, USA, 2017: 958–959.
    [24] ZHANG Tongwei, HAN Guangjie, LIN Chuan, et al. Integration of communication, positioning, navigation and timing for deep-sea vehicles[J]. IEEE Network, 2020, 34(2): 121–127. doi: 10.1109/MNET.001.1900294
    [25] ZHANG Tongwei, YAN Lei, HAN Guangjie, et al. Low-cost, long-endurance cooperative navigation based on “light” marine equipment in deep sea[J]. IEEE Network, 2021, 35(2): 222–228. doi: 10.1109/MNET.011.2000443
    [26] ZHANG Tongwei, HAN Guangjie, YAN Lei, et al. Fast calculation of underwater acoustic horizontal range: A guarantee for B5G ocean mobile networks[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 2922–2933. doi: 10.1109/TNSE.2020.3025571
    [27] HAMILTON B R and MA X. Noncooperative routing with cooperative diversity[C]. 2007 IEEE International Conference on Communications, Glasgow, UK, 2007: 4237–4242.
    [28] MA Xiaoli, SUN Minte, ZHAO Gang, et al. An efficient path pruning algorithm for geographical routing in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2474–2488. doi: 10.1109/TVT.2007.912332
    [29] 陈友淦, 许肖梅. 人工智能技术在水声通信中的研究进展[J]. 哈尔滨工程大学学报, 2020, 41(10): 1536–1544. doi: 10.11990/jheu.202007110

    CHEN Yougan and XU Xiaomei. Research progress in artificial intelligence technology for underwater acoustic communications[J]. Journal of Harbin Engineering University, 2020, 41(10): 1536–1544. doi: 10.11990/jheu.202007110
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  609
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-05-23
  • 录用日期:  2022-05-23
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回