高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分贝叶斯双尺度自适应时变噪声容积卡尔曼滤波的同步定位与建图算法

李帅永 谢现乐 毛文平 杨雪梅 聂嘉炜

李帅永, 谢现乐, 毛文平, 杨雪梅, 聂嘉炜. 基于变分贝叶斯双尺度自适应时变噪声容积卡尔曼滤波的同步定位与建图算法[J]. 电子与信息学报, 2023, 45(3): 1006-1014. doi: 10.11999/JEIT220031
引用本文: 李帅永, 谢现乐, 毛文平, 杨雪梅, 聂嘉炜. 基于变分贝叶斯双尺度自适应时变噪声容积卡尔曼滤波的同步定位与建图算法[J]. 电子与信息学报, 2023, 45(3): 1006-1014. doi: 10.11999/JEIT220031
LI Shuaiyong, XIE Xianle, MAO Wenping, YANG Xuemei, NIE Jiawei. Simultaneous Localization And Mapping Based on Variational Bayses Double-Scale Adaptive time-varying noise Cubature Kalman Filter[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1006-1014. doi: 10.11999/JEIT220031
Citation: LI Shuaiyong, XIE Xianle, MAO Wenping, YANG Xuemei, NIE Jiawei. Simultaneous Localization And Mapping Based on Variational Bayses Double-Scale Adaptive time-varying noise Cubature Kalman Filter[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1006-1014. doi: 10.11999/JEIT220031

基于变分贝叶斯双尺度自适应时变噪声容积卡尔曼滤波的同步定位与建图算法

doi: 10.11999/JEIT220031
基金项目: 国家自然科学基金(61703066),重庆市基础研究与前沿探索项目(cstc2018jcyjAX0536),重庆市技术创新与应用发展专项(cstc2018jszx-cyztzxX0028, cstc2019jscx-fxydX0042, cstc2019jscx-zdztzxX0053)
详细信息
    作者简介:

    李帅永:男,教授,博士生导师,研究方向为自动驾驶与环境感知技术、SLAM与自主导航、压缩感知与超分辨重构、工业无损检测理论等

    谢现乐:男,硕士生,研究方向为移动机器人SLAM后端优化

    毛文平:男,硕士生,研究方向为移动机器人路径规划

    杨雪梅:女,硕士生,研究方向为移动机器人视觉SLAM回环检测算法

    聂嘉炜:男,硕士生,研究方向为动态环境下SLAM视觉里程计

    通讯作者:

    李帅永 lishuaiyong@cqupt.edu.cn

  • 中图分类号: TN713; TP242

Simultaneous Localization And Mapping Based on Variational Bayses Double-Scale Adaptive time-varying noise Cubature Kalman Filter

Funds: The National Natural Science Foundation of China (61703066), Chongqing Basic Research and Frontier Exploration Project (cstc2018jcyjAX0536), Chongqing Technology Innovation and Application Development Special Project (cstc2018jszx-cyztzxX0028, cstc2019jscx-fxydX0042, cstc2019jscx-zdztzxX0053)
  • 摘要: 为解决移动机器人在同步定位与建图(SLAM)中因系统噪声和观测噪声时变导致状态估计精度降低的问题,该文提出一种基于变分贝叶斯的双尺度自适应时变噪声容积卡尔曼滤波SLAM算法(DSACKF SLAM)。该算法采用逆 Wishart 分布对一步预测误差协方差矩阵 P k|k–1和观测噪声协方差矩阵 R k建模,分别用来降低系统噪声和观测噪声的影响,并利用变分贝叶斯滤波实现对移动机器人状态向量 X k, P k|k–1 R k的联合估计。分别在系统噪声和观测噪声时变和时不变的条件下进行仿真实验,结果表明与基于无迹卡尔曼滤波的 SLAM 算法(UKF SLAM) 、自适应更新观测噪声的容积卡尔曼滤波的SLAM 算法(VB-ACKF SLAM) 相比,所提DSACKF SLAM算法在噪声时变时,平均位置误差分别减小1.54 m, 3.47 m;噪声时不变时,平均位置误差分别减小0.62 m, 1.41 m,证明DSACKF SLAM算法有更好的估计性能。
  • 图  1  仿真实验环境

    图  2  不同算法仿真实验结果对比(噪声时不变)

    图  3  不同算法位置均方根误差(噪声时不变)

    图  4  不同算法仿真实验结果对比(噪声时变)

    图  5  不同算法位置均方根误差(噪声时变)

    算法1 DSACKF SLAM算法
     滤波输入:${ {\boldsymbol{X} }_{k - 1|k - 1} },{ {\boldsymbol{P} }_{k - 1|k - 1} },{{\boldsymbol{U}}_{k - 1|k - 1} },{{\boldsymbol{Q}}_k}, { {\boldsymbol{Z} }_k},f( \cdot ),h( \cdot ),\tau ,\rho ,{u_{k - 1|k - 1} }$
     (1)预测:依据式(15)—式(17)求取${\boldsymbol{X} }_{k|k - 1}$和$ {{\boldsymbol{P}}_{k|k - 1}} $
     (2)参数赋值:${\boldsymbol{T} }_{k|k - 1}^1 = \tau { {\boldsymbol{P} }_{k|k - 1} },\; {\boldsymbol{T} }_{k|k - 1}^1 = m + \tau + 1,\;{\boldsymbol{B} } = \sqrt \rho { {\boldsymbol{E} }_n},\;{\boldsymbol{U}}_{k|k - 1}^1 = {\boldsymbol{B} }{{\boldsymbol{U}}_{k - 1|k - 1} }{ {\boldsymbol{B} }^{\rm{T} } },$
       $ u_{k|k - 1}^1 = \rho ({u_{k - 1|k - 1} } - n - 1) + n + 1 $
     for $ j = 1:N $
     (3)更新$ {{\boldsymbol{R}}_k} $和$ {{\boldsymbol{P}}_{k|k - 1}} $
     ${u_{k|k} }{\text{ = } }u_{k|k - 1}^1 + 1,\; { {\boldsymbol{T} }_{k|k} } = {\boldsymbol{T} }_{k|k - 1}^1 + 1,\;{\boldsymbol{R}}_k^j = U_{k|k - 1}^j{({u_{k|k} } - n - 1)^{ - 1} },\;{\boldsymbol{P}}_{k|k - 1}^j = {\boldsymbol{T} }_{k|k - 1}^j({ { {\boldsymbol{T} }_{k|k} } - m - 1)^{ - 1} }$
     (4)重新计算容积点$ \chi _{k|k - 1,i}^j $并更新观测估计量${\boldsymbol{Z} }_{k|k - 1}^j$
     $\begin{aligned}& \chi _{k|k - 1,i}^j = { {\boldsymbol{X} }_{k|k - 1} } + { {\boldsymbol{S} }_{k|k - 1,j} } {\boldsymbol{E} }_m^i\sqrt m , i = 1,2, \cdots, m;\quad \chi _{k|k - 1,i}^j = { {\boldsymbol{X} }_{k|k - 1} } - { {\boldsymbol{S} }_{k|k - 1,j} } {\boldsymbol{E} }_m^i\sqrt m ,i = m + 1,m + 2, \cdots, 2m \\& { {\boldsymbol{S} }_{k|k - 1,j} } {\boldsymbol{S} }_{k|k - 1,j}^{\rm{T} } = {\boldsymbol{P} }_{k|k - 1}^j \\& {\boldsymbol{Z} }_{k|k - 1,i}^j = h(\chi _{k|k - 1,i}^j),i = 1,2, \cdots, 2m;\quad {\boldsymbol{Z} }_{k|k - 1}^j = \frac{1}{ {2m} }\sum\limits_{i = 1}^{2m} { {\boldsymbol{Z} }_{k|k - 1,i}^j} \end{aligned}$
     (5)更新${ {\boldsymbol{X} }_{k|k} }$和$ {{\boldsymbol{P}}_{k|k}} $
     $\begin{array}{l}{ {\boldsymbol{K} } }_{k}^{j}=\left[\dfrac{1}{2m}{\displaystyle \sum _{i=1}^{2m}({\chi }_{k|k-1,i}^{j}-{ {\boldsymbol{X} } }_{k|k-1}){({ {\boldsymbol{z} } }_{k|k-1,i}^{j}-{ {\boldsymbol{Z} } }_{k|k-1}^{j})}^{ {\rm{T} } } }\right]{\left[{{\boldsymbol{R}}}_{k}^{j}+\dfrac{1}{2m}{\displaystyle \sum _{i=1}^{2m}({ {\boldsymbol{z} } }_{k|k-1,i}^{j}-{ {\boldsymbol{Z} } }_{k|k-1}^{j}){({ {\boldsymbol{z} } }_{k|k-1,i}^{j}-{ {\boldsymbol{Z} } }_{k|k-1}^{j})}^{ {\rm{T} } } }\right]}^{-1}\\ { {\boldsymbol{X} } }_{k|k}^{j}={ {\boldsymbol{X} } }_{k|k-1}+{ {\boldsymbol{K} } }_{k}^{j}({ {\boldsymbol{Z} } }_{k}-{ {\boldsymbol{Z} } }_{k|k-1}^{j}),{ {\boldsymbol{P} } }_{k|k}^{j}={ {\boldsymbol{P} } }_{k|k-1}^{j}-{ {\boldsymbol{K} } }_{k}^{j}{ {\boldsymbol{P} } }_{zz,k|k-1}^{j}({ { {\boldsymbol{K} } }_{k}^{j} })^{\rm{T} }\end{array}$
     (6)更新参数${\boldsymbol{T} }_{k|k - 1}^{j + 1}$和${\boldsymbol{U}}_{k|k - 1}^{j + 1}$
     $\begin{gathered} \chi _{k|k,i}^j = {\boldsymbol{X} }_{k|k}^j + { {\boldsymbol{S} }_{k|k,j} } {\boldsymbol{E} }_m^i\sqrt m ,i = 1,2, \cdots, m;\quad \chi _{k|k,i}^j = {\boldsymbol{X} }_{k|k}^j - { {\boldsymbol{S} }_{k|k,j} } {\boldsymbol{E} }_m^i\sqrt m ,i = m + 1,m + 2, \cdots, 2m \\ { {\boldsymbol{S} }_{k|k,j} } {\boldsymbol{S} }_{k|k,j}^{\rm{T} } = {\boldsymbol{P} }_{k|k}^j \\ {\boldsymbol{Z} }_{k|k,i}^j = h(\chi _{k|k,i}^j),i = 1,2, \cdots, 2m \\ {\boldsymbol{T} }_{k|k - 1}^{j + 1} = {\boldsymbol{T} }_{k|k - 1}^1 + \frac{1}{ {2m} }\sum\limits_{i = 1}^{2m} (\chi _{k|k,i}^j - { {\boldsymbol{X} }_{k|k - 1} }){ {(\chi _{k|k,i}^j - { { {\boldsymbol{X} }_{k|k - 1} })}^{\rm{T}}} } ,\quad {\boldsymbol{U} }_{k|k - 1}^{j + 1} = {\boldsymbol{U} }_{k|k - 1}^1 + \frac{1}{ {2m} }\sum\limits_{i = 1}^{2m} ( { {\boldsymbol{Z} }_k} - {\boldsymbol{Z} }_{k|k,i}^j) {({ { {\boldsymbol{Z} }_k} - { {\boldsymbol{Z} }_{k|k,i}^j)}^{\rm{T} } } } \\ \end{gathered}$
     end for
     ${ {\boldsymbol{X} }_{k|k} } = {\boldsymbol{X} }_{k|k}^N,{ {\boldsymbol{P} }_{k|k} } = {\boldsymbol{P} }_{k|k}^N,{{\boldsymbol{U}}_{k|k} } = {\boldsymbol{U}}_{k|k - 1}^{N + 1},{u_{k|k} } = u_{k|k - 1}^1 + 1$
     滤波输出:${ {\boldsymbol{X} }_{k|k} },{ {\boldsymbol{P} }_{k|k} },{{\boldsymbol{U}}_{k|k} },{u_{k|k} }$
    下载: 导出CSV

    表  1  不同算法实验误差数据统计比较(噪声时不变)(m)

    算法位置误差X方向误差Y方向误差
    DSACKF SLAM1.94530.94181.0035
    VB-ACKF SLAM2.56291.39771.1651
    UKF SLAM3.35611.72461.6316
    下载: 导出CSV

    表  2  不同算法实验数据统计比较(噪声时变)(m)

    SLAM算法位置误差X方向误差Y方向误差
    DSACKF SLAM3.61331.87971.7336
    VB-ACKF SLAM5.15282.98402.1688
    UKF SLAM7.08943.91453.1749
    下载: 导出CSV

    表  3  不同参数$ \rho $实验数据统计比较(噪声时变)(m)

    误差$\rho $=0.80$\rho $=0.85$\rho $=0.90$\rho $=0.95$\rho $=1.00
    位置误差4.12263.92633.61333.79273.8025
    X方向误差1.99171.85221.60311.65331.6021
    Y方向误差2.13092.07412.01022.13942.2004
    下载: 导出CSV

    表  4  不同参数$ \tau $实验数据统计比较(噪声时变)(m)

    误差$ \tau = 1 $$ \tau = 2 $$ \tau = 3 $$ \tau = 4 $$ \tau = 5 $
    位置误差3.61333.71693.79283.88163.9325
    X方向误差1.60311.67221.71411.75631.8121
    Y方向误差2.01022.04472.07872.12532.1204
    下载: 导出CSV
  • [1] DURRANT-WHYTE H and BAILEY T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99–110. doi: 10.1109/MRA.2006.1638022
    [2] CHEN Chaoyang, HE Qi, YE Qiubo, et al. Simultaneous localization and mapping method based on improved cubature Kalman filter[J]. Sensors and Materials, 2021, 33(8): 2591–2606. doi: 10.18494/SAM.2021.3387
    [3] ECKENHOFF K, GENEVA P, and HUANG Guoquan. MIMC-VINS: A versatile and resilient multi-IMU multi-camera visual-inertial navigation system[J]. IEEE Transactions on Robotics, 2021, 37(5): 1360–1380. doi: 10.1109/TRO.2021.3049445
    [4] 陈孟元, 徐明辉. 基于自组织可增长映射的移动机器人仿生定位算法研究[J]. 电子与信息学报, 2021, 43(4): 1003–1013. doi: 10.11999/JEIT200025

    CHEN Mengyuan and XU Minghui. Research on mobile robot bionic location algorithm based on growing self-organizing map[J]. Journal of Electronics &Information Technology, 2021, 43(4): 1003–1013. doi: 10.11999/JEIT200025
    [5] GONG Zheng, LI J, LUO Zhipeng, et al. Mapping and semantic modeling of underground parking lots using a backpack LiDAR system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 734–746. doi: 10.1109/TITS.2019.2955734
    [6] 胡钊政, 刘佳蕙, 黄刚, 等. 融合WiFi、激光雷达与地图的机器人室内定位[J]. 电子与信息学报, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671

    HU Zhaozheng, LIU Jiahui, HUANG Gang, et al. Integration of WiFi, laser, and map for robot indoor localization[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671
    [7] KIA S S, ROUNDS S, and MARTINEZ S. Cooperative localization for mobile agents: A recursive decentralized algorithm based on Kalman-filter decoupling[J]. IEEE Control Systems Magazine, 2016, 36(2): 86–101. doi: 10.1109/MCS.2015.2512033
    [8] BLOESCH M, BURRI M, OMARI S, et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. The International Journal of Robotics Research, 2017, 36(10): 1053–1072. doi: 10.1177/0278364917728574
    [9] LUO Jingwen and QIN Shiyin. A fast algorithm of SLAM based on combinatorial interval filters[J]. IEEE Access, 2018, 6: 28174–28192. doi: 10.1109/ACCESS.2018.2838112
    [10] QIN Tong, LI Peiliang, and SHEN Shaojie. VINS-Mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004–1020. doi: 10.1109/TRO.2018.2853729
    [11] CAO Yanjun and BELTRAME G. VIR-SLAM: Visual, inertial, and ranging SLAM for single and multi-robot systems[J]. Autonomous Robots, 2021, 45(6): 905–917. doi: 10.1007/s10514-021-09992-7
    [12] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874–1890. doi: 10.1109/TRO.2021.3075644
    [13] 董星亮, 苑晶, 张雪波, 等. 室内环境下基于图像序列拓扑关系的移动机器人全局定位[J]. 机器人, 2019, 41(1): 83–89,103. doi: 10.13973/j.cnki.robot.180100

    DONG Xingliang, YUAN Jing, ZHANG Xuebo, et al. Mobile robot global localization based on topological relationship between image sequences in indoor environments[J]. Robot, 2019, 41(1): 83–89,103. doi: 10.13973/j.cnki.robot.180100
    [14] WILLIAMS B, CUMMINS M, NEIRA J, et al. A comparison of loop closing techniques in monocular SLAM[J]. Robotics and Autonomous Systems, 2009, 57(12): 1188–1197. doi: 10.1016/j.robot.2009.06.010
    [15] CHOI K S and LEE S G. An enhanced CSLAM for multi-robot based on unscented Kalman filter[J]. International Journal of Control, Automation and Systems, 2012, 10(1): 102–108. doi: 10.1007/s12555-012-0111-4
    [16] CHANDRA K P B, GU DAWEI, and POSTLETHWAITE I. Cubature Kalman filter based localization and mapping[J]. IFAC Proceedings Volumes, 2011, 44(1): 2121–2125. doi: 10.3182/20110828-6-IT-1002.03104
    [17] JWO D J, YANG Chifan, CHUANG C H, et al. Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter[J]. Nonlinear Dynamics, 2013, 73(1/2): 377–395. doi: 10.1007/s11071-013-0793-z
    [18] 张文玲, 朱明清, 陈宗海. 基于强跟踪UKF的自适应SLAM算法[J]. 机器人, 2010, 32(2): 190–195. doi: 10.13973/j.cnki.robot.2010.02.013

    ZHANG Wenling, ZHU Mingqing, and CHEN Zonghai. An adaptive SLAM algorithm based on strong tracking UKF[J]. Robot, 2010, 32(2): 190–195. doi: 10.13973/j.cnki.robot.2010.02.013
    [19] 张抒扬, 董鹏, 敬忠良. 变分贝叶斯自适应容积卡尔曼的SLAM算法[J]. 哈尔滨工业大学学报, 2019, 51(4): 12–18. doi: 10.11918/j.issn.0367-6234.201801013

    ZHANG Shuyang, DONG Peng, and JING Zhongliang. Adaptive cubature Kalman filtering SLAM algorithm based on variational Bayes[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 12–18. doi: 10.11918/j.issn.0367-6234.201801013
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  605
  • HTML全文浏览量:  364
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回