高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

II型Z-优化二元互补序列对的构造

林金朝 周银萍 李国军 叶昌荣 曾凡鑫

林金朝, 周银萍, 李国军, 叶昌荣, 曾凡鑫. II型Z-优化二元互补序列对的构造[J]. 电子与信息学报, 2023, 45(3): 913-920. doi: 10.11999/JEIT220014
引用本文: 林金朝, 周银萍, 李国军, 叶昌荣, 曾凡鑫. II型Z-优化二元互补序列对的构造[J]. 电子与信息学报, 2023, 45(3): 913-920. doi: 10.11999/JEIT220014
LIN Jinzhao, ZHOU Yinping, LI Guojun, YE Changrong, ZENG Fanxin. Construction of Type II Z-Optimal Binary Complementary Sequence Pairs[J]. Journal of Electronics & Information Technology, 2023, 45(3): 913-920. doi: 10.11999/JEIT220014
Citation: LIN Jinzhao, ZHOU Yinping, LI Guojun, YE Changrong, ZENG Fanxin. Construction of Type II Z-Optimal Binary Complementary Sequence Pairs[J]. Journal of Electronics & Information Technology, 2023, 45(3): 913-920. doi: 10.11999/JEIT220014

II型Z-优化二元互补序列对的构造

doi: 10.11999/JEIT220014
基金项目: 国家重点研发计划(2019YFC1511300),重庆市基础研究与前沿探索项目(cstc2021ycjh-bgzxm0072)
详细信息
    作者简介:

    林金朝:男,教授,研究方向为无线通信传输技术、BAN网络与信息处理技术

    周银萍:女,硕士生,研究方向为序列设计、信号处理

    李国军:男,教授,研究方向为军民融合应急指挥信息系统体质标准、核心技术、关键装备与规划建设

    叶昌荣:男,副教授,研究方向为短波通信、信号处理

    曾凡鑫:男,教授,研究方向为序列设计、纠错码、信号处理

    通讯作者:

    周银萍 s190101006@stu.cqupt.edu.cn

  • 中图分类号: TN911.2

Construction of Type II Z-Optimal Binary Complementary Sequence Pairs

Funds: The National Key Research and Development Program of China (2019YFC1511300), Chongqing Basic Research and Frontier Exploration Project (cstc2021ycjh-bgzxm0072)
  • 摘要: 该文以长度为N(N为整数)的Golay互补对(GCP)为种子序列对,在种子序列对的3个选定位置中插入特定的码元,构造出长度为N+3的II型Z-优化2元Z-互补序列对(ZCP)。与已知同长度II型Z-优化2元Z-互补序列对相比,构造的新序列有更低的峰均包络功率比(PMEPR)。Z-互补序列对和Golay互补序列对都广泛应用于正交频分复用(OFDM)系统和码分多址(CDMA)系统等,但前者有更灵活的序列长度和更多的序列数量,更能满足应用的需求。
  • 图  1  I型条件下序列长度为13的8种插入方法的PMEPR对比

    图  2  II型条件下序列长度为11的8种插入方法的PMEPR对比

    图  3  I型条件下不同长度序列的PMEPR

    图  4  II型条件下不同长度序列的PMEPR

    表  1  I型及II型构造条件

    $ (w,v) $I型条件II型条件
    new1$ \begin{gathered} (({i_1})||{a_1}||{a_2}||({i_2},{i_3})) \\ (({j_1})||{b_1}||{b_2}||({j_2},{j_3})) \\ \end{gathered} $$ \begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ;{i_1} = {j_1}; \\ {i_2} = - {j_2};{i_3} = - {j_3} \\ \end{gathered} $$ \begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ;{i_1} = - {j_1}; \\ {i_2} = {j_2};{i_3} = {j_3} \\ \end{gathered} $
    new2$ \begin{gathered} (({i_1},{i_2})||{a_1}||{a_2}||({i_3})) \\ (({j_1},{j_2})||{b_1}||{b_2}||({j_3})) \\ \end{gathered} $$ \begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ;{i_1} = {j_1}; \\ {i_2} = {j_2};{i_3} = - {j_3} \\ \end{gathered} $$ \begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ;{i_1} = - {j_1}; \\ {i_2} = - {j_2};{i_3} = {j_3} \\ \end{gathered} $
    new3$ \begin{gathered} (({i_1})||{a_1}||({i_2})||{a_2}||({i_3})) \\ (({j_1})||{b_1}||({j_2})||{b_2}||({j_3})) \\ \end{gathered} $$\begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ; \\ {i_1} = {j_1};{i_3} = - {j_3} \\ \end{gathered}$$\begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ; \\ {i_1} = - {j_1};{i_3} = {j_3} \\ \end{gathered}$
    known1[20]$ \begin{gathered} (({i_1},{i_2})||{a_1}||({i_3})||{a_2}) \\ (({j_1},{j_2})||{b_1}||({j_3})||{b_2}) \\ \end{gathered} $$ \begin{gathered} {i_k},{j_k} \in \{ \pm 1\} {\text{ ;}}{i_1} = {j_1}; \\ {i_2} = {j_2};{i_3} = - {j_3} \\ \end{gathered} $$ \begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ;{i_1} = - {j_1}; \\ {i_2} = - {j_2};{i_3} = {j_3} \\ \end{gathered} $
    know2[20]$ \begin{gathered} ({a_1}||({i_1})||{a_2}||({i_2},{i_3})) \\ ({b_1}||({j_1})||{b_2}||({j_2},{j_3})) \\ \end{gathered} $$ \begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ;{i_1} = {j_1}; \\ {i_2} = - {j_2};{i_3} = - {j_3} \\ \end{gathered} $$ \begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ;{i_1} = 1 - {j_1}; \\ {i_2} = {j_2};{i_3} = {j_3} \\ \end{gathered} $
    known3[20]$ \begin{gathered} (({i_1})||{a_1}||({i_2},{i_3})||{a_2}) \\ (({j_1})||{b_1}||({j_2},{j_3})||{b_2}) \\ \end{gathered} $$\begin{gathered} {i_k},{j_k} \in \{ \pm 1\}; \\ {i_1} = {j_1};{i_3} = - {j_3} \\ \end{gathered}$$\begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ; \\ {i_1} = - {j_1};{i_3} = {j_3} \\ \end{gathered}$
    known4[20]$ \begin{gathered} ({a_1}||({i_1},{i_2})||{a_2}||({i_3})) \\ ({b_1}||({j_1},{j_2})||{b_2}||({j_3})) \\ \end{gathered} $$\begin{gathered} {i_k},{j_k} \in \{ \pm 1\}; \\ {i_1} = {j_1};{i_3} = - {j_3} \\ \end{gathered}$$\begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ; \\ {i_1} = - {j_1};{i_3} = {j_3} \\ \end{gathered}$
    known5[20]$ \begin{gathered} ({a_1}||({i_1},{i_2},{i_3})||{a_2}) \\ ({b_1}||({j_1},{j_2},{j_3})||{b_2}) \\ \end{gathered} $$\begin{gathered} {i_k},{j_k} \in \{ \pm 1\}; \\ {i_1} = {j_1};{i_3} = - {j_3} \\ \end{gathered}$$\begin{gathered} {i_k},{j_k} \in \{ \pm 1\} ; \\ {i_1} = - {j_1};{i_3} = {j_3} \\ \end{gathered}$
    下载: 导出CSV
  • [1] GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620
    [2] WELTI G. Quaternary codes for pulsed radar[J]. IRE Transactions on Information Theory, 1960, 6(3): 400–408. doi: 10.1109/TIT.1960.1057572
    [3] SPASOJEVIC P and GEORGHIADES C N. Complementary sequences for ISI channel estimation[J]. IEEE Transactions on Information Theory, 2001, 47(3): 1145–1152. doi: 10.1109/18.915670
    [4] POPOVIC B M. Synthesis of power efficient multitone signals with flat amplitude spectrum[J]. IEEE Transactions on Communications, 1991, 39(7): 1031–1033. doi: 10.1109/26.87205
    [5] DAVIS J A and JEDWAB J. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2397–2417. doi: 10.1109/18.796380
    [6] TSENG C C and LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860
    [7] APARICIO J and SHIMURA T. Asynchronous detection and identification of multiple users by multi-carrier modulated complementary set of sequences[J]. IEEE Access, 2018, 6: 22054–22069. doi: 10.1109/ACCESS.2018.2828500
    [8] FAN Pingzhi, YUAN Weina, and TU Yifeng. Z-complementary binary sequences[J]. IEEE Signal Processing Letters, 2007, 14(8): 509–512. doi: 10.1109/LSP.2007.891834
    [9] 陈晓玉, 高茜超, 李永杰. 最佳零相关区序列集构造法[J]. 通信学报, 2020, 41(8): 215–222. doi: 10.11959/j.issn.1000-436x.2020175

    CHEN Xiaoyu, GAO Xichao, and LI Yongjie. Construction of optimal zero correlation zone sequence set[J]. Journal on Communications, 2020, 41(8): 215–222. doi: 10.11959/j.issn.1000-436x.2020175
    [10] ADHIKARY A R, MAJHI S, LIU Zilong, et al. New sets of optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2020, 66(1): 669–678. doi: 10.1109/TIT.2019.2944185
    [11] LIU Zilong, PARAMPALLI U, and GUAN Yongliang. Optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5768–5781. doi: 10.1109/TIT.2014.2335731
    [12] ADHIKARY A R, MAJHI S, LIU Zilong, et al. New sets of even-length binary Z-complementary pairs with asymptotic ZCZ ratio of 3/4[J]. IEEE Signal Processing Letters, 2018, 25(7): 970–973. doi: 10.1109/LSP.2018.2834143
    [13] CHEN Chaoyu and PAI Chengyu. Binary Z-complementary pairs with bounded peak-to-mean envelope power ratios[J]. IEEE Communications Letters, 2019, 23(11): 1899–1903. doi: 10.1109/LCOMM.2019.2934692
    [14] LI Xudong, FAN Pingzhi, TANG Xiaohu, et al. Existence of binary Z-complementary pairs[J]. IEEE Signal Processing Letters, 2011, 18(1): 63–66. doi: 10.1109/LSP.2010.2095459
    [15] ADHIKARY A R, MAJHI S, LIU Zilong, et al. New optimal binary Z-complementary pairs of odd lengths[C]. 2017 Eighth International Workshop on Signal Design and Its Applications in Communications (IWSDA), Sapporo, Japan, 2017: 14–18.
    [16] XIE Chunlei and SUN Yujuan. Constructions of even-period binary Z-complementary pairs with large ZCZs[J]. IEEE Signal Processing Letters, 2018, 25(8): 1141–1145. doi: 10.1109/LSP.2018.2848102
    [17] SHEN Bingsheng, YANG Yang, ZHOU Zhengchun, et al. New optimal binary Z-complementary pairs of odd length 2 m+3[J]. IEEE Signal Processing Letters, 2019, 26(12): 1931–1934. doi: 10.1109/LSP.2019.2954805
    [18] ZENG Fanxin, HE Xiping, ZHANG Zhenyu, et al. Optimal and Z-optimal Type-II odd-length binary Z-complementary pairs[J]. IEEE Communications Letters, 2020, 24(6): 1163–1167. doi: 10.1109/LCOMM.2020.2977897
    [19] GU Zhi, ZHOU Zhengchun, WANG Qi, et al. New construction of optimal Type-II binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2021, 67(6): 3497–3508. doi: 10.1109/TIT.2020.3007670
    [20] TIAN Shucong, YANG Meng, and WANG Jianpeng. Two constructions of binary Z-complementary pairs[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2021, E104.A(4): 768–772. doi: 10.1587/transfun.2020EAL2069
    [21] LIU Zilong, GUAN Yongliang, and PARAMPALLI U. On optimal binary Z-complementary pair of odd period[C]. 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 2013: 3125–3129.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  456
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 修回日期:  2022-05-19
  • 网络出版日期:  2022-05-24
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回