高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进盖尔-沙普利算法的自动识别系统与双频地波雷达断裂航迹关联

张晖 曾显普 高亮

张晖, 曾显普, 高亮. 基于改进盖尔-沙普利算法的自动识别系统与双频地波雷达断裂航迹关联[J]. 电子与信息学报, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005
引用本文: 张晖, 曾显普, 高亮. 基于改进盖尔-沙普利算法的自动识别系统与双频地波雷达断裂航迹关联[J]. 电子与信息学报, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005
ZHANG Hui, ZENG Xianpu, GAO Liang. Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005
Citation: ZHANG Hui, ZENG Xianpu, GAO Liang. Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005

基于改进盖尔-沙普利算法的自动识别系统与双频地波雷达断裂航迹关联

doi: 10.11999/JEIT220005
基金项目: 国家重点研发计划(2017YFC1405200),国家自然科学基金(61701263)
详细信息
    作者简介:

    张晖:男,副教授,研究方向为智能信息处理、多传感数据融合等

    曾显普:男,硕士生,研究方向为高频地波雷达多目标跟踪与航迹关联

    高亮:男,硕士生,研究方向为高频地波雷达信号处理与仿真

    通讯作者:

    张晖 Hui.zhang@imu.edu.cn

  • 中图分类号: TN958

Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm

Funds: The National Key Research and Development Program of China (2017YFC1405200), The National Natural Science Foundation of China (61701263)
  • 摘要: 高频地波雷达(HFSWR)可以实现大范围海上船只目标的连续探测,但是海杂波等干扰因素的影响容易造成跟踪航迹的断裂。目前关于地波雷达航迹关联的研究中,通常忽略了航迹断裂的情况,将航迹关联视为二分图匹配问题,这会导致可能将单一目标的断裂航迹判断为多个目标,从而引起目标的误关联。针对上述情况,该文结合模糊综合评判和迭代搜索算法,首次将盖尔-沙普利(GS)算法引入航迹关联领域,并且对其进行改进以满足航迹断裂时的多对多航迹关联情况,提出了改进的盖尔-沙普利(IGS)算法。在该算法中,通过计算航迹之间的模糊综合评判值来得到航迹之间的倾向度序列,再由迭代搜索对航迹进行聚类以获得航迹集群,最后将航迹集群及倾向度序列输入盖尔-沙普利算法来进行数轮博弈以给出关联结果。利用双频率高频地波雷达和船只自动识别系统(AIS)的仿真数据与实测数据进行实验测试,实验结果表明:所提出的算法解决了在航迹断裂情况下的多传感器航迹关联问题,且在密集区域的航迹关联效果优于传统算法。
  • 图  1  航迹断裂时的关联情况示意图

    图  2  时间冲突时的决策流程图

    图  3  AIS和HFSWR仿真数据航迹关联结果

    图  4  AIS和HFSWR实测数据航迹关联结果

    图  5  AIS和HFSWR仿真数据局部航迹关联结果

    图  6  AIS和HFSWR双频航迹关联结果

    图  7  非合作目标航迹关联结果

    表  1  航迹集G1详细情况

    航迹标号倾向度表(正序)航迹所属时间(min)
    A1B1, B3, B203~19
    A2B3, B1, B230~43
    A3B3, B2, B123~46
    A4B1, B2, B321~49
    B1A2, A3, A4, A106~30
    B2A3, A4, A1, A212~36
    B3A3, A4, A2, A115~51
    下载: 导出CSV

    表  2  航迹集G1匹配过程

    邀约轮数该轮邀约结束时的匹配结果
    第1轮A1-B1; A2-无 A3-B3; A4-B1
    第2轮A1-无; A2-B1; A3-B3; A4-无
    第3轮A1-B2; A2-B1; A3-B3; A4-B2
    下载: 导出CSV

    表  3  航迹关联结果性能分析

    实验数据和所用算法关联比例(%)关联正确率(%)距离RMSE(km)方位RMSE(°)速度RMSE(km/h)计算耗时(s)
    仿真数据GNNDA48.2088.810.40770.27590.44015.73
    仿真数据IGS75.1897.130.38630.24060.382611.82
    实测数据GNNDA42.06未知1.99301.89350.50246.49
    实测数据IGS60.75未知1.87831.67100.343813.05
    下载: 导出CSV

    表  4  实测数据非合作目标双频航迹关联个例分析(km/h)

    航迹名航迹时间k1点速度k2点速度k3点速度k4点速度k5点速度k6点速度
    F1T109:57~10:22–13.48–12.26–12.86–13.33无数值无数值
    F1T210:31~10:46无数值无数值无数值无数值–13.23–13.02
    F2T109:57~10:12–13.31–12.48无数值无数值无数值无数值
    F2T210:18~10:46无数值无数值–12.43–13.05–13.01–12.78
    下载: 导出CSV
  • [1] JI Yonggang, ZHANG Jie, MENG Junmin, et al. Point association analysis of vessel target detection with SAR, HFSWR and AIS[J]. Acta Oceanologica Sinica, 2014, 33(9): 73–81. doi: 10.1007/s13131-014-0498-2
    [2] 刘根旺, 刘永信, 纪永刚, 等. 基于模糊双门限的高频地波雷达与AIS目标航迹关联方法[J]. 系统工程与电子技术, 2016, 38(3): 557–562. doi: 10.3969/j.issn.1001-506X.2016.03.13

    LIU Genwang, LIU Yongxin, JI Yonggang, et al. Track association for high-frequency surface wave radar and AIS based on fuzzy double threshold theory[J]. Systems Engineering and Electronics, 2016, 38(3): 557–562. doi: 10.3969/j.issn.1001-506X.2016.03.13
    [3] SUN Weifeng, HUANG Weimin, JI Yonggang, et al. A vessel azimuth and course joint re-estimation method for compact HFSWR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1041–1051. doi: 10.1109/TGRS.2019.2943065
    [4] SUN Weifeng, DAI Yongshou, JI Yonggang, et al. Vessel target tracking exploiting frequency diversity for dual-frequency HFSWR[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.
    [5] NIKOLIC D, STOJKOVIC N, and LEKIC N. Maritime over the horizon sensor integration: High frequency surface-wave-radar and automatic identification system data integration algorithm[J]. Sensors, 2018, 18(4): 1147. doi: 10.3390/s18041147
    [6] STOJKOVIC N, NIKOLIC D, and PUZOVIĆ S. Density based clustering data association procedure for real–time HFSWRs tracking at OTH distances[J]. IEEE Access, 2020, 8: 39907–39919. doi: 10.1109/ACCESS.2020.2976481
    [7] WANG Jun, ZENG Yajun, WEI Shaoming, et al. Multi-sensor track-to-track association and spatial registration algorithm under incomplete measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 3337–3350. doi: 10.1109/TSP.2021.3084533
    [8] NAZARI M, PASHAZADEH S, and MOHAMMAD-KHANLI L. An adaptive density-based fuzzy clustering track association for distributed tracking system[J]. IEEE Access, 2019, 7: 135972–135981. doi: 10.1109/ACCESS.2019.2941184
    [9] 靳冰洋, 刘峥, 秦基凯. 基于灰色关联度的两级实时航迹关联算法[J]. 兵工学报, 2020, 41(7): 1330–1338. doi: 10.3969/j.issn.1000-1093.2020.07.010

    JIN Bingyang, LIU Zheng, and QIN Jikai. Two-stage real-time track correlation algorithm based on gray correlation[J]. Acta Armamentarii, 2020, 41(7): 1330–1338. doi: 10.3969/j.issn.1000-1093.2020.07.010
    [10] 蔡昌恺, 朱浩, 余仁伟, 等. 基于航迹全局和局部混合特征的航迹关联算法[J]. 仪器仪表学报, 2020, 41(10): 32–42. doi: 10.19650/j.cnki.cjsi.J2006793

    CAI Changkai, ZHU Hao, YU Renwei, et al. Track-to-track association by the global and local mixture feature[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 32–42. doi: 10.19650/j.cnki.cjsi.J2006793
    [11] RAGHU J, SRIHARI P, THARMARASA R, et al. Comprehensive track segment association for improved track continuity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2463–2480. doi: 10.1109/TAES.2018.2820364
    [12] 周学平, 李佳杰, 赵晓莲, 等. 基于匈牙利法的机载雷达中断航迹关联[J]. 现代雷达, 2021, 43(6): 42–48. doi: 10.16592/j.cnki.1004-7859.2021.06.008

    ZHOU Xueping, LI Jiajie, ZHAO Xiaolian, et al. Airborne radar track segment association based on hungarian algorithm[J]. Modern Radar, 2021, 43(6): 42–48. doi: 10.16592/j.cnki.1004-7859.2021.06.008
    [13] CHANG W, JAU Y T, SU S L, et al. Gale-Shapley-algorithm based resource allocation scheme for device-to-device communications underlaying downlink cellular networks[C]. 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–6.
    [14] PITTEL B. One-sided version of Gale-Shapley proposal algorithm and its likely behavior under random preferences[J]. Discrete Applied Mathematics, 2021, 292: 1–18. doi: 10.1016/j.dam.2020.12.020
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  227
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-08-31
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回