Robust Joint Accumulation and Detection for Discrete Frequency Coded Waveform Signals at Low Signal-to-Noise Ratio
-
摘要: 雷达电子侦察环境下,非合作目标发射的离散频率编码(DFC)波形信号具有低截获、抗干扰的特性,在低信噪比(SNR)条件下传统方法难以实现波形的稳健积累及准确的脉冲检测,容易造成数据漏检与情报缺失。针对以上问题,该文提出一种联合的积累检测算法,该算法通过相关积累和非相干积累的联合处理实现了低信噪比下稳健脉冲信号包络的获取,并利用双向恒虚警(CFAR)检测和脉冲沿判决准则抑制了突跳噪声对脉冲检测的影响,实现了准确而稳健的脉冲到达时间和脉冲宽度的估计。相比于常规算法,该文在不需要任何先验信息的条件下能够实现离散频率编码波形信号的准确检测,检测虚警率低且具有良好的稳健性。仿真实验验证了所提算法的有效性和稳健性。Abstract: In the radar electronic reconnaissance environment, the Discrete Frequency Coded (DFC) waveform signals emitted by non-cooperative targets with low probability of interception and anti-interference is hard to be accumulated and detected under low Signal-to-Noise Ratio (SNR) conditions. Consequently, a joint accumulation and detection algorithm is proposed in this paper. First, correlated accumulation and incoherent accumulation are jointly used to obtain signal envelopes from low SNR environments. Then, the bi-directional Constant False Alarm Rate (CFAR) threshold and pulse edge decision criteria are used to detect pulses and estimate accurate time of arrival and pulse width. Compared with conventional algorithms, the proposed algorithm could realize the accurate detection of discrete frequency coded waveform signals without any prior information, with low detection false alarm rate and good robustness. Simulation experiments verify the effectiveness and robustness of the algorithm in this paper.
-
表 1 仿真DFC雷达信号波形参数
参数名称 参数值 采样率 300 MHz 脉冲重复时间 120 μs 脉冲宽度 30 μs 起始频率 10 MHz 带宽 120 MHz 脉冲到达时间 24 μs -
[1] 鲍庆龙, 王森, 潘嘉蒙, 等. 非合作雷达辐射源目标探测系统关键技术分析[J]. 电波科学学报, 2020, 35(4): 496–503. doi: 10.13443/j.cjors.2020040702BAO Qinglong, WANG Sen, PAN Jiameng, et al. Key technology analysis of target detection system based on non-cooperative radar illuminator[J]. Chinese Journal of Radio Science, 2020, 35(4): 496–503. doi: 10.13443/j.cjors.2020040702 [2] 胡新宇, 张铁军, 王昀. 低截获概率雷达信号侦察技术[J]. 航天电子对抗, 2020, 36(5): 40–43. doi: 10.16328/j.htdz8511.2020.05.009HU Xinyu, ZHANG Tiejun, and WANG Yun. Low probability of intercept radar signal reconnaissance technology[J]. Aerospace Electronic Warfare, 2020, 36(5): 40–43. doi: 10.16328/j.htdz8511.2020.05.009 [3] BHATT T D, RAJAN E G, and RAO P V D S. Design of frequency-coded waveforms for target detection[J]. IET Radar, Sonar & Navigation, 2008, 2(5): 388–394. [4] EHARA N, SASASE I, and MORI S. Weak radar signal detection based on wavelet transform[C]. ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia, 1994: II/377–II/380. [5] 简涛, 何友, 苏峰, 等. 小波变换在雷达信号检测中的应用[J]. 海军航空工程学院学报, 2006, 21(1): 121–126. doi: 10.3969/j.issn.1673-1522.2006.01.006JIAN Tao, HE You, SU Feng, et al. Overview on radar signal detection with wavelet transform[J]. Journal of Naval Aeronautical Engineering Institute, 2006, 21(1): 121–126. doi: 10.3969/j.issn.1673-1522.2006.01.006 [6] LIU Yongjian, XIAO Peng, WU Hongchao, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973–981. doi: 10.1109/JSEE.2015.00106 [7] KOOTSOOKOS P J, LOVELL B C, and BOASHASH B. A unified approach to the STFT, TFDs, and instantaneous frequency[J]. IEEE Transactions on Signal Processing, 1992, 40(8): 1971–1982. doi: 10.1109/78.149998 [8] BARBAROSSA S and SCAGLIONE A. Parameter estimation of spread spectrum frequency-hopping signals using time-frequency distributions[C]. The First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Paris, France, 1997: 213–216. [9] LEI Yingke, ZHONG Zifa, and WU Yanhua. A parameter estimation algorithm for high-speed frequency-hopping signals based on RSPWVD[C]. 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, 2007: 392–395. [10] 蒋伊琳, 尹子茹, 宋宇. 基于卷积神经网络的低截获概率雷达信号检测算法[J]. 电子与信息学报, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132JIANG Yilin, YIN Ziru, and SONG Yu. Low probability of intercept radar signal detection algorithm based on convolutional neural networks[J]. Journal of Electronics &Information Technology, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132 [11] 王令欢, 马红光, 张欣豫, 等. 基于支持向量聚类的多分量线性调频信号检测[J]. 电子与信息学报, 2007, 29(11): 2661–2664. doi: 10.3724/SP.J.1146.2006.00617WANG Linghuan, MA Hongguang, ZHANG Xinyu, et al. Multi-component linear FM signal detection based on support vector clustering[J]. Journal of Electronics &Information Technology, 2007, 29(11): 2661–2664. doi: 10.3724/SP.J.1146.2006.00617 [12] 陈伯孝. 现代雷达系统分析与设计[M]. 西安: 西安电子科技大学出版社, 2012: 314–317.CHEN Boxiao. Mordern Radar System Analysis and Design[M]. Xi’an: Xidian University Press, 2012: 314–317. [13] 姚山峰, 严航, 曾安军. 基于累积相关的雷达信号检测算法研究[J]. 电信技术研究, 2011(3): 29–35.YAO Shanfeng, YAN Hang, and ZENG Anjun. Research on radar signal detection algorithm based on cumulative correlation[J]. Research on Telecommunication Technology, 2011(3): 29–35. [14] 王芳, 王旭东, 潘明海. 一种实时雷达脉冲信号检测算法及其性能分析[J]. 现代电子技术, 2012, 35(7): 5–8. doi: 10.3969/j.issn.1004-373X.2012.07.002WANG Fang, WANG Xudong, and PAN Minghai. A real-time radar pulse signal detection method and its performance analysis[J]. Modern Electronics Technique, 2012, 35(7): 5–8. doi: 10.3969/j.issn.1004-373X.2012.07.002 [15] 王启智, 岳玫君, 张锦中, 等. 基于多通道分段自相关的弱信号检测算法及实现[J]. 雷达与对抗, 2009(3): 28–32. doi: 10.19341/j.cnki.issn.1009-0401.2009.03.008WANG Qizhi, YUE Meijun, ZHANG Jinzhong, et al. The algorithm and implementation based on multichannel sectional self-correlation for weak signal detection[J]. Radar &Ecm, 2009(3): 28–32. doi: 10.19341/j.cnki.issn.1009-0401.2009.03.008 [16] 赵树杰, 赵建勋. 信号检测与估计理论[M]. 北京: 清华大学出版社, 2005: 452–459.ZHAO Shujie and ZHAO Jianxun. Signal Detection and Estimation Theory[M]. Beijing: Tsinghua University Press, 2005: 452–459. [17] 何友, 关键, 孟祥伟, 等. 雷达自动检测和CFAR处理方法综述[J]. 系统工程与电子技术, 2001, 23(1): 9–14,85. doi: 10.3321/j.issn:1001-506X.2001.01.003HE You, GUAN Jian, MENG Xiangwei, et al. Survey of automatic radar detection and CFAR processing[J]. Systems Engineering and Electronics, 2001, 23(1): 9–14,85. doi: 10.3321/j.issn:1001-506X.2001.01.003 [18] 龚林, 浣沙, 张磊, 等. 基于二次统计CFAR处理的目标径向尺寸估计[J]. 电波科学学报, 2021, 36(4): 597–603. doi: 10.13443/j.cjors.2020011901GONG Lin, HUAN Sha, ZHANG Lei, et al. Target length estimation based on quadratic statistical CFAR processing[J]. Chinese Journal of Radio Science, 2021, 36(4): 597–603. doi: 10.13443/j.cjors.2020011901