高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁驱动下一类混合神经元模型的动力学响应与图像加密应用

安新磊 熊丽 乔帅

安新磊, 熊丽, 乔帅. 电磁驱动下一类混合神经元模型的动力学响应与图像加密应用[J]. 电子与信息学报, 2023, 45(3): 929-940. doi: 10.11999/JEIT211605
引用本文: 安新磊, 熊丽, 乔帅. 电磁驱动下一类混合神经元模型的动力学响应与图像加密应用[J]. 电子与信息学报, 2023, 45(3): 929-940. doi: 10.11999/JEIT211605
AN Xinlei, XIONG Li, QIAO Shuai. Dynamic Response of a Class of Hybrid Neuron Model by Electromagnetic Induction and Application of Image Encryption[J]. Journal of Electronics & Information Technology, 2023, 45(3): 929-940. doi: 10.11999/JEIT211605
Citation: AN Xinlei, XIONG Li, QIAO Shuai. Dynamic Response of a Class of Hybrid Neuron Model by Electromagnetic Induction and Application of Image Encryption[J]. Journal of Electronics & Information Technology, 2023, 45(3): 929-940. doi: 10.11999/JEIT211605

电磁驱动下一类混合神经元模型的动力学响应与图像加密应用

doi: 10.11999/JEIT211605
基金项目: 国家自然科学基金 (11962012, 62061014)
详细信息
    作者简介:

    安新磊:男,教授,硕士生导师,研究方向为非线性系统动力学分析、混沌保密通信

    熊丽:女,教授,研究方向为非线性电路与系统、混沌保密通信

    乔帅:男,博士生,研究方向为非线性系统动力学分析与控制

    通讯作者:

    安新磊 axin1983@163.com

  • 中图分类号: O441; TN918.4

Dynamic Response of a Class of Hybrid Neuron Model by Electromagnetic Induction and Application of Image Encryption

Funds: The National Natural Science Foundation of China (11962012, 62061014)
  • 摘要: 在神经元活动的模型建立和分析过程中,应考虑一些生物物理效应。由于神经系统内部细胞内外离子浓度的波动,在集体电活动和神经元集群之间信号传播的过程中需要考虑电磁场的内部波动和跨膜磁通的影响。该文在一类混合神经元中引入磁通变量,通过对膜电位的调制诱发复杂的时变电磁场,运用Xppauto, Matcont和MATLAB等分析工具,探讨了新模型平衡点的存在性、初值敏感性和双参数分岔,发现外界刺激电流和电磁场变化时,可诱发新模型产生丰富的放电模式,如静息态、尖峰放电、周期(或混沌)簇放电,特别是由于磁通变量及忆阻器的引入产生的共存放电、隐藏放电等新现象。通过上述分析,基于电磁感应的神经元模型具有高非线性和较多的敏感参数,可使加密算法具有较大的密钥空间,基于此,该文设计了一种图像加密算法,对明文图像的像素先进行1次扩散再对其位置进行两次置乱。最后,通过一系列数值实验证明所设计的加密算法能有效地加密图像并且具有较高的安全性。该文考虑了神经细胞内外的电磁感应效应,有助于更全面了解神经元之间的信息编码和转迁规律,更多的分岔参数和高复杂性也使所设计的神经元模型在图像加密中具有很好的应用前景。
  • 图  1  系统式(1)在不同双参数平面上的平衡点分布及其分岔曲线

    图  2  系统式(1)关于参数$I \in [0.2712,0.2727]$和初值$V_0 \in [ - 0.71, - 0.65]$的全局吸引域

    图  3  $ I = {\text{0}}{\text{.2718}} $时不同初值下的双稳态

    图  4  系统式(1)在不同初值面上的吸引域

    图  5  系统(1)关于${k_0}$的ISI分岔图和关于${k_0}{\text{,}}\;I$的双参分岔图

    图  6  $ {k_0} = 0.1 $时,不同电流$ I $时神经元(1)的放电状态

    图  7  关于参数$ {V_1} $$ {r_{\text{1}}} $的分岔图

    图  8  神经元式(1)的ISI分岔图及最大Lyapunov指数图

    图  9  神经元式(1)的3维相图和放电序列图

    图  10  加密算法流程图

    图  11  算法测试结果

    图  12  密钥敏感性测试

    图  13  直方图分析结果

    图  14  Lena图像相关性分析结果

    图  15  Splash图像的不同剪切攻击测试结果

    表  1  Lena图像的相关性系数对比

    算法方向$ {\mathbf{R}} $通道$ {\mathbf{G}} $通道$ {\mathbf{B}} $通道
    本文水平垂直对角0.0070–0.0032–0.00190.00750.00410.00390.0002–0.0021–0.0011
    文献[35]水平垂直对角0.0137–0.02370.0109–0.0246–0.0170–0.0133–0.01370.0023–0.0013
    文献[36]水平垂直对角0.0083–0.0049–0.0095–0.00540.0100–0.0017–0.00100.0124–0.0042
    下载: 导出CSV

    表  2  Lena图像在不同算法下的信息熵

    图像$ {\mathbf{R}} $$ {\mathbf{G}} $$ {\mathbf{B}} $
    Lena7. 99767.99767.9975
    文献[37]7.99727.99657.9971
    文献[35]7.98927.98987.9899
    文献[38]7.98967.98857.9899
    下载: 导出CSV
  • [1] BABACAN Y, KAÇAR F, and GÜRKAN K. A spiking and bursting neuron circuit based on memristor[J]. Neurocomputing, 2016, 203: 86–91. doi: 10.1016/j.neucom.2016.03.060
    [2] BAO Bocheng, HU Aihuang, BAO Han, et al. Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors[J]. Complexity, 2018, 2018: 3872573. doi: 10.1155/2018/3872573
    [3] ZHAO Yong, SUN Xiaoyan, LIU Yang, et al. Phase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic field[J]. Nonlinear Dynamics, 2018, 93(3): 1315–1324. doi: 10.1007/s11071-018-4261-7
    [4] 曹奔, 关利南, 古华光. 兴奋性作用诱发神经簇放电个数不增反降的分岔机制[J]. 物理学报, 2018, 67(24): 240502. doi: 10.7498/aps.67.20181675

    CAO Ben, GUAN Linan, and GU Huaguang. Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect[J]. Acta Physica Sinica, 2018, 67(24): 240502. doi: 10.7498/aps.67.20181675
    [5] 李诗玮, 全廷伟, 周航, 等. 神经元形态重建进展及趋势[J]. 科学通报, 2019, 64(5/6): 532–545. doi: 10.1360/N972018-00998

    LI Shiwei, QUAN Tingwei, ZHOU Hang, et al. Review of advances and prospects in neuron reconstruction[J]. Chinese Science Bulletin, 2019, 64(5/6): 532–545. doi: 10.1360/N972018-00998
    [6] XU Quan, TAN Xiao, ZHU Dong, et al. Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit[J]. Chaos, Solitons & Fractals, 2020, 141: 110353. doi: 10.1016/j.chaos.2020.110353
    [7] 徐泠风, 李传东, 陈玲. 神经元模型对比分析[J]. 物理学报, 2016, 65(24): 240701. doi: 10.7498/aps.65.240701

    XU Lingfeng, LI Chuandong, and CHEN Ling. Contrastive analysis of neuron model[J]. Acta Physica Sinica, 2016, 65(24): 240701. doi: 10.7498/aps.65.240701
    [8] 彭俊, 王如彬. 神经元膜电位对信息的编码[J]. 动力学与控制学报, 2020, 18(1): 24–32. doi: 10.6052/1672-6553-2020-011

    PENG Jun and WANG Rubin. Information coding of neuronal membrane potential[J]. Journal of Dynamics and Control, 2020, 18(1): 24–32. doi: 10.6052/1672-6553-2020-011
    [9] 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    [10] RAJAGOPAL K, NAZARIMEHR F, KARTHIKEYAN A, et al. Dynamics of a neuron exposed to integer- and fractional-order discontinuous external magnetic flux[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 584–590. doi: 10.1631/FITEE.1800389
    [11] AN Xinlei and ZHANG Li. Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor[J]. Nonlinear Dynamics, 2018, 94(4): 2995–3010. doi: 10.1007/s11071-018-4539-9
    [12] MA Jun and TANG Jun. A review for dynamics of collective behaviors of network of neurons[J]. Science China Technological Sciences, 2015, 58(12): 2038–2045. doi: 10.1007/s11431-015-5961-6
    [13] LV Mi, WANG Chunni, REN Guodong, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3): 1479–1490. doi: 10.1007/s11071-016-2773-6
    [14] WU Fuqiang, WANG Chunni, JIN Wuyin, et al. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise[J]. Physica A:Statistical Mechanics and its Applications, 2017, 469: 81–88. doi: 10.1016/j.physa.2016.11.056
    [15] 安新磊, 张莉. 一类忆阻神经元的电活动多模振荡及Hamilton能量反馈控制[J]. 力学学报, 2020, 52(4): 1174–1188. doi: 10.6052/0459-1879-20-035

    AN Xinlei and ZHANG Li. Multi-mode oscillations and Hamilton energy feedback control of a class of memristor neuron[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1174–1188. doi: 10.6052/0459-1879-20-035
    [16] 安新磊, 乔帅, 张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制[J]. 物理学报, 2021, 70(5): 050501. doi: 10.7498/aps.70.20201347

    AN Xinlei, QIAO Shuai, and ZHANG Li. Dynamic response and control of neuros based on electromagnetic field theory[J]. Acta Physica Sinica, 2021, 70(5): 050501. doi: 10.7498/aps.70.20201347
    [17] KAFRAJ M S, PARASTESH F, and JAFARI S. Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise[J]. Chaos, Solitons & Fractals, 2020, 137: 109782. doi: 10.1016/j.chaos.2020.109782
    [18] NJITACKE Z T, DOUBLA I S, MABEKOU S, et al. Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: Coexistence of patterns and its analog implementation[J]. Chaos, Solitons & Fractals, 2020, 137: 109785. doi: 10.1016/j.chaos.2020.109785
    [19] ZHOU Yicong, HUA Zhongyun, PUN C M, et al. Cascade chaotic system with applications[J]. IEEE Transactions on Cybernetics, 2015, 45(9): 2001–2012. doi: 10.1109/TCYB.2014.2363168
    [20] ALI D S, ALWAN N A, and AI-SAIDI N M G. Image encryption based on highly sensitive chaotic system[J]. AIP Conference Proceedings, 2019, 2183(1): 080007. doi: 10.1063/1.5136200
    [21] SUN Jiayu, LI Chunbiao, LU Tianai, et al. A memristive chaotic system with hypermultistability and its application in image encryption[J]. IEEE Access, 2020, 8: 139289–139298. doi: 10.1109/ACCESS.2020.3012455
    [22] YANG Feifei, MOU Jun, MA Chenguang, et al. Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application[J]. Optics and Lasers in Engineering, 2020, 129: 106031. doi: 10.1016/j.optlaseng.2020.106031
    [23] LI Xuejun, MOU Jun, XIONG Li, et al. Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption[J]. Optics & Laser Technology, 2021, 140: 107074. doi: 10.1016/j.optlastec.2021.107074
    [24] XU Ji, LI Peng, YANG Feifei, et al. High intensity image encryption scheme based on quantum Logistic chaotic map and complex hyperchaotic system[J]. IEEE Access, 2019, 7: 167904–167918. doi: 10.1109/ACCESS.2019.2952140
    [25] BAO Han, HUA Zhongyun, LIU Wenbo, et al. Discrete memristive neuron model and its interspike interval-encoded application in image encryption[J]. Science China Technological Sciences, 2021, 64(10): 2281–2291. doi: 10.1007/s11431-021-1845-x
    [26] ZHANG Sen, ZHENG Jiahao, WANG Xiaoping, et al. Multi-scroll hidden attractor in memristive HR neuron model under electromagnetic radiation and its applications[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2021, 31(1): 011101. doi: 10.1063/5.0035595
    [27] YILDIRIM M. DNA encoding for RGB image encryption with memristor based neuron model and chaos phenomenon[J]. Microelectronics Journal, 2020, 104: 104878. doi: 10.1016/j.mejo.2020.104878
    [28] TLELO-CUAUTLE E, DÍAZ-MUÑOZ J D, GONZÁLEZ-ZAPATA A M, et al. Chaotic image encryption using Hopfield and Hindmarsh–Rose neurons implemented on FPGA[J]. Sensors, 2020, 20(5): 1326. doi: 10.3390/s20051326
    [29] SLIMANE N B, AOUF N, BOUALLEGUE K, et al. A novel chaotic image cryptosystem based on DNA sequence operations and single neuron model[J]. Multimedia Tools and Applications, 2018, 77(23): 30993–31019. doi: 10.1007/s11042-018-6145-8
    [30] ZHAO Xuelong, KIM J W, ROBINSON P A, et al. Low dimensional model of bursting neurons[J]. Journal of Computational Neuroscience, 2014, 36(1): 81–95. doi: 10.1007/s10827-013-0468-2
    [31] WILSON H R. Simplified dynamics of human and mammalian neocortical neurons[J]. Journal of Theoretical Biology, 1999, 200(4): 375–388. doi: 10.1006/jtbi.1999.1002
    [32] JAFARI S, SPROTT J C, and NAZARIMEHR F. Recent new examples of hidden attractors[J]. The European Physical Journal Special Topics, 2015, 224(8): 1469–1476. doi: 10.1140/epjst/e2015-02472-1
    [33] JIA Bing, GU Huaguang, and XUE Lei. A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space[J]. Cognitive Neurodynamics, 2017, 11(2): 189–200. doi: 10.1007/s11571-017-9422-8
    [34] ALVAREZ G and LI Shujun. Some basic cryptographic requirements for chaos-based cryptosystems[J]. International Journal of Bifurcation and Chaos, 2006, 16(8): 2129–2151. doi: 10.1142/S0218127406015970
    [35] WU Xiangjun, WANG Kunshu, WANG Xingyuan, et al. Color image DNA encryption using NCA map-based CML and one-time keys[J]. Signal Processing, 2018, 148: 272–287. doi: 10.1016/j.sigpro.2018.02.028
    [36] ZHOU Jie, ZHOU Nanrun, and GONG Lihua. Fast color image encryption scheme based on 3D orthogonal Latin squares and matching matrix[J]. Optics & Laser Technology, 2020, 131: 106437. doi: 10.1016/j.optlastec.2020.106437
    [37] YANG Feifei, MOU Jun, LUO Chunfeng, et al. An improved color image encryption scheme and cryptanalysis based on a hyperchaotic sequence[J]. Physica Scripta, 2019, 94(8): 085206. doi: 10.1088/1402-4896/ab0033
    [38] LIU Hongjun, KADIR A, and XU Chengbo. Color image encryption with cipher feedback and coupling chaotic map[J]. International Journal of Bifurcation and Chaos, 2020, 30(12): 2050173. doi: 10.1142/S0218127420501734
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  688
  • HTML全文浏览量:  314
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-04-03
  • 网络出版日期:  2022-04-21
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回