高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于战术通信环境的车对车信道模型

林鑫 刘爱军 梁小虎 韩晨

林鑫, 刘爱军, 梁小虎, 韩晨. 一种适用于战术通信环境的车对车信道模型[J]. 电子与信息学报, 2023, 45(3): 1023-1031. doi: 10.11999/JEIT211587
引用本文: 林鑫, 刘爱军, 梁小虎, 韩晨. 一种适用于战术通信环境的车对车信道模型[J]. 电子与信息学报, 2023, 45(3): 1023-1031. doi: 10.11999/JEIT211587
LIN Xin, LIU Aijun, LIANG Xiaohu, HAN Chen. A Vehicle-to-Vehicle Channel Model for Tactical Communication Environments[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1023-1031. doi: 10.11999/JEIT211587
Citation: LIN Xin, LIU Aijun, LIANG Xiaohu, HAN Chen. A Vehicle-to-Vehicle Channel Model for Tactical Communication Environments[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1023-1031. doi: 10.11999/JEIT211587

一种适用于战术通信环境的车对车信道模型

doi: 10.11999/JEIT211587
基金项目: 江苏省前沿引领技术基础研究专项(BK20192002),国家重点研发计划项目(2018YFB1801103),国防科技大学科研计划项目(ZK22-08)
详细信息
    作者简介:

    林鑫:男,博士生,研究方向为战术通信、车联网技术等

    刘爱军:男,教授,研究方向为卫星通信、战术通信、信号处理、空间异构网络、信道编码和信息论等

    梁小虎:男,讲师,研究方向为卫星通信、超奈奎斯特传输技术等

    韩晨:男,工程师,研究方向为卫星通信、通信抗干扰技术等

    通讯作者:

    刘爱军 liuaj.cn@163.com

  • 中图分类号: TN929.5

A Vehicle-to-Vehicle Channel Model for Tactical Communication Environments

Funds: The Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu Province (BK20192002), The National Key Research and Development Program of China (2018YFB1801103), The Research Program of National University of Defense Technology (ZK22-08)
  • 摘要: 在战术通信环境下,机动车载平台间的无线信道特性更加复杂。传统移动信道模型没有考虑战术场景下的特殊因素对车对车信道的影响,所以此类模型不能应用于战术车载通信系统的设计和优化。为解决传统移动信道模型的局限性,该文提出一种适用于战术通信环境的车对车(Tactical-Vehicle-to-Vehicle, T-V2V)信道模型。该模型充分考虑了实际战术场景中两个车载平台间相互运动、方向性天线的对准问题以及地形地貌等因素对车对车信道的影响,并基于电平通过率(Lever Crossing Rate, LCR)和平均衰落持续时间(Average Duration of Fading, ADF)指标对所提模型进行统计分析。仿真结果表明,所提模型更加贴合战术通信实际情况,能够更为准确地反映出战术通信环境下的车对车信道的变化特性。最后,该文对影响T-V2V信道模型的相关因素进行了仿真分析,所得结果对战术车载通信系统的物理层设计具有重要参考价值。
  • 图  1  战术车载平台点对点通信系统

    图  2  不同地形下车载平台收发天线对准角度示意图

    图  3  传统移动信道模型数据概率密度分布拟合结果

    图  4  T-V2V信道模型数据概率密度分布拟合结果

    图  5  不同地形中车载平台通信方向上天线的增益对比

    图  6  T-V2V模型与传统移动信道模型LCR与ADF指标对比

    图  7  不同的莱斯因子对应的LCR指标与ADF指标

    图  8  不同强度遮蔽效应下的LCR指标与ADF指标

  • [1] ZHAN Yuting, ZHANG Weile, and DENG Hao. Sparsity-aware direct equalization of time-varying channels for V2V communications[J]. IEEE Wireless Communications Letters, 2021, 10(2): 387–391. doi: 10.1109/LWC.2020.3032595
    [2] ZAJIĆ A G. Impact of Moving scatterers on vehicle-to-vehicle narrow-band channel characteristics[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3094–3106. doi: 10.1109/TVT.2014.2299239
    [3] YANG Mi, AI Bo, HE Ruisi, et al. Measurements and cluster-based modeling of vehicle-to-vehicle channels with large vehicle obstructions[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5860–5874. doi: 10.1109/TWC.2020.2997808
    [4] LI Wei, HU Xiaoya, GAO Jie, et al. Measurements and analysis of propagation channels in vehicle-to-infrastructure scenarios[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3550–3561. doi: 10.1109/TVT.2020.2972150
    [5] SUN Shu, RAPPAPORT T S, SHAFI M, et al. Propagation models and performance evaluation for 5G millimeter-wave bands[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8422–8439. doi: 10.1109/TVT.2018.2848208
    [6] SHAFI M, ZHANG Jianhua, TATARIA H, et al. Microwave vs. Millimeter-wave propagation channels: Key differences and impact on 5G cellular systems[J]. IEEE Communications Magazine, 2018, 56(12): 14–20. doi: 10.1109/MCOM.2018.1800255
    [7] BAI Lu, HUANG Ziwei, DU Haohua, et al. A 3-D non-stationary wideband V2V GBSM with UPAs for massive MIMO wireless communication systems[J]. IEEE Internet of Things Journal, 2021, 8(24): 17622–17638. doi: 10.1109/JIOT.2021.3081816
    [8] WU Shangbin, WANG Chengxiang, AGGOUNE M H M, et al. A general 3-D non-stationary 5G wireless channel model[J]. IEEE Transactions on Communications, 2018, 66(7): 3065–3078. doi: 10.1109/TCOMM.2017.2779128
    [9] 梁晓林, 赵雄文, 李亦天. 移动散射体下的V2V信道相关性和多普勒谱特性研究[J]. 电子与信息学报, 2017, 39(3): 613–618. doi: 10.11999/JEIT160412

    LIANG Xiaolin, ZHAO Xiongwen, and LI Yitian. Impact of moving scatterers in channel correlations and doppler spectral densities for vehicle-to-vehicle communications[J]. Journal of Electronics &Information Technology, 2017, 39(3): 613–618. doi: 10.11999/JEIT160412
    [10] YANG Mi, AI Bo, HE Ruisi, et al. Non-stationary vehicular channel characterization in complicated scenarios[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8387–8400. doi: 10.1109/TVT.2021.3096973
    [11] WALTER M, SHUTIN D, SCHMIDHAMMER M, et al. Geometric analysis of the doppler frequency for general non-stationary 3D mobile-to-mobile channels based on prolate spheroidal coordinates[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10419–10434. doi: 10.1109/TVT.2020.3011408
    [12] ALGHORANI Y, CHEKKOURI A S, CHEKIRED D A, et al. Improved S-AF and S-DF relaying schemes using machine learning based power allocation over cascaded rayleigh fading channels[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7508–7520. doi: 10.1109/TITS.2020.3003820
    [13] WANG Jun, WANG Chengxiang, HUANG Jia, et al. A novel 3D non-stationary GBSM for 6G THz ultra-massive MIMO wireless systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12312–12324. doi: 10.1109/TVT.2021.3117239
    [14] ZHOU Tao, YANG Yi, LIU Liu, et al. A dynamic 3-D wideband GBSM for cooperative massive MIMO channels in intelligent high-speed railway communication systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2237–2250. doi: 10.1109/TWC.2020.3040392
    [15] ZHOU Tao, TAO Cheng, SALOUS S, et al. Geometry-based multi-link channel modeling for high-speed train communication networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1229–1238. doi: 10.1109/TITS.2019.2905036
    [16] RAKESH R T and VITERBO E. Channel modeling for wireless communications using ambit processes[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 8396–8409. doi: 10.1109/TWC.2020.3022589
    [17] 程翔, 张荣庆, 陈晨. 5G车联网技术及应用[M]. 北京: 科学出版社, 2020: 18–21.
    [18] AKKI A S and HABER F. A statistical model of mobile-to-mobile land communication channel[J]. IEEE Transactions on Vehicular Technology, 1986, 35(1): 2–7. doi: 10.1109/T-VT.1986.24062
    [19] SEN I and MATOLAK D W. Vehicle–vehicle channel models for the 5-GHz band[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 235–245. doi: 10.1109/TITS.2008.922881
    [20] LI Cuiran, LIU Ling, and XIE Jianli. Finite-state Markov wireless channel modeling for railway tunnel environments[J]. China Communications, 2020, 17(2): 30–39. doi: 10.23919/JCC.2020.02.003
    [21] MOLISCH A F, 田斌, 帖翊, 任光亮, 等译. 无线通信[M]. 2版. 北京: 电子工业出版社, 2020: 57–81.

    MOLISCH A F, TIAN Bin, TIE Yi, REN Guangliang, et al. translation. Wireless Communications[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2020: 57–81.
    [22] 卢春兰, 杨涛, 余同彬, 等. 电波与光波传输技术[M]. 北京: 人民邮电出版社, 2013: 134–191.

    LU Chunlan, YANG Tao, YU Tongbin, et al. Electromagnetic Wave and Optical Wave Transmission Technology[M]. Beijing: Posts & Telecom Press, 2013: 134–191.
    [23] YANG Haibing, HERBEN M H A J, AKKERMANS I J A G, et al. Impact analysis of directional antennas and multiantenna beamformers on radio transmission[J]. IEEE Transactions on Vehicular Technology, 2008, 57(3): 1695–1707. doi: 10.1109/TVT.2007.907308
    [24] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 4版. 北京: 高等教育出版社, 2008: 73–74.
  • 加载中
图(8)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  274
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-05-28
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回