高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究

刘金凤 陈浩玮 HERBERTHo-Ching Iu

刘金凤, 陈浩玮, HERBERTHo-Ching Iu. 基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究[J]. 电子与信息学报, 2023, 45(3): 1111-1120. doi: 10.11999/JEIT211585
引用本文: 刘金凤, 陈浩玮, HERBERTHo-Ching Iu. 基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究[J]. 电子与信息学报, 2023, 45(3): 1111-1120. doi: 10.11999/JEIT211585
LIU Jinfeng, CHEN Haowei, HERBERT Ho-Ching Iu. Li-ion Batteries Life Prediction Based on Variational Modal Decomposition and DAIPSO-GPR to Solve the Capacity Regeneration Phenomenon[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1111-1120. doi: 10.11999/JEIT211585
Citation: LIU Jinfeng, CHEN Haowei, HERBERT Ho-Ching Iu. Li-ion Batteries Life Prediction Based on Variational Modal Decomposition and DAIPSO-GPR to Solve the Capacity Regeneration Phenomenon[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1111-1120. doi: 10.11999/JEIT211585

基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究

doi: 10.11999/JEIT211585
基金项目: 黑龙江省自然科学基金(LH2019E067)
详细信息
    作者简介:

    刘金凤:女,副教授,研究方向为电力电气器件驱动控制、分布式控制、物联网

    陈浩玮:男,硕士生,研究方向为锂电池健康状态估计

    HERBERTHo-Ching Iu:男,教授,研究方向为功率器件驱动控制、忆阻器建模与逻辑电路应用

    通讯作者:

    陈浩玮 18846163989@163.com

  • 中图分类号: TN409; TP18

Li-ion Batteries Life Prediction Based on Variational Modal Decomposition and DAIPSO-GPR to Solve the Capacity Regeneration Phenomenon

Funds: The National Natural Science Foundation of Heilongjiang Province (LH2019E067)
  • 摘要: 锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型。首先利用等压降放电时间分析法,提取健康因子,利用VMD对其进行分解处理,挖掘数据内在信息,降低数据复杂度,并针对不同分量,利用不同协方差函数建立GPR预测模型,有效捕获了数据的长期下降趋势和短期再生波动。利用DAIPSO算法优化GPR模型,实现核函数超参数的优化,建立了更准确的退化关系模型,最终实现剩余使用寿命的准确预测,以及不确定性表征。最后利用NASA电池数据进行验证,离线预测结果表明所提方法具有较高预测精度和泛化适应能力。
  • 图  1  电池容量衰退曲线

    图  2  等压降放电时间提取图

    图  3  等压降放电时间序列

    图  4  锂离子电池的RUL预测模型框图

    图  5  不同模态数K下的VMD模态分量瞬时频率均值

    图  6  基于VMD的间接健康因子分解结果

    图  7  4组电池的分量预测结果

    图  8  GPR与DAIPSO-GPR模型对比

    图  9  基于DAIPSO-GPR模型的预测结果

    表  1  模型预测误差

    电池序号评价指标
    RMSEMAPEEOLEOPRULPRULRULerror
    B00050.01360.006412412544451
    B00060.01530.007710911029301
    B00070.01360.006316616886882
    B00180.01480.0075979637361
    下载: 导出CSV

    表  2  VMD-DAIPSO-GPR与其他RUL预测方法的比较

    电池序号方法训练数据长度$ {\text{RU}}{{\text{L}}_{{\text{error}}}} $$ {\text{P}}{{\text{E}}_{\text{r}}} $(%)
    B0005LSTM8048.4
    AUKF-GASVR8036.3
    MK-RVM8024.2
    VMD-DAIPSO-GPR8012.1
    下载: 导出CSV
  • [1] LIU Wei and XU Yan. Data-driven online health estimation of Li-ion batteries using a novel energy-based health indicator[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1715–1718. doi: 10.1109/TEC.2020.2995112
    [2] QU Jiantao, LIU Feng, MA Yuxiang, et al. A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178–87191. doi: 10.1109/ACCESS.2019.2925468
    [3] GOU Bin, XU Yan, and FENG Xue. State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10854–10867. doi: 10.1109/TVT.2020.3014932
    [4] CHAOUI H and IBE-EKEOCHA C C. State of charge and state of health estimation for lithium batteries using recurrent neural networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 8773–8783. doi: 10.1109/TVT.2017.2715333
    [5] ZHENG Xueying and DENG Xiaogang. State-of-health prediction for lithium-ion batteries with multiple Gaussian process regression model[J]. IEEE Access, 2019, 7: 150383–150394. doi: 10.1109/ACCESS.2019.2947294
    [6] ZHOU Yapeng and HUANG Miaohua. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016, 65: 265–273. doi: 10.1016/j.microrel.2016.07.151
    [7] FENG Xuning, WENG Caihao, HE Xiangming, et al. Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8583–8592. doi: 10.1109/TVT.2019.2927120
    [8] WIDODO A, SHIM M C, CAESARENDRA W, et al. Intelligent prognostics for battery health monitoring based on sample entropy[J]. Expert Systems with Applications, 2011, 38(9): 11763–11769. doi: 10.1016/j.eswa.2011.03.063
    [9] DONG Hancheng, JIN Xiaoning, LOU Yangbing, et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources, 2014, 271: 114–123. doi: 10.1016/j.jpowsour.2014.07.176
    [10] SUN Peikun and WANG Zhenpo. Research of the relationship between Li-ion battery charge performance and SOH based on MIGA-Gpr method[J]. Energy Procedia, 2016, 88: 608–613. doi: 10.1016/j.egypro.2016.06.086
    [11] PENG Yu, HOU Yandong, SONG Yuchen, et al. Lithium-ion battery prognostics with hybrid Gaussian process function regression[J]. Energies, 2018, 11(6): 1420. doi: 10.3390/en11061420
    [12] LIU Datong, ZHOU Jinbao, PENG Yu, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(6): 915–928. doi: 10.1109/TSMC.2015.2389757
    [13] FENG Xuning, WENG Caihao, HE Xiangming, et al. Incremental capacity analysis on commercial lithium-ion batteries using support vector regression: A parametric study[J]. Energies, 2018, 11(9): 2323. doi: 10.3390/en11092323
    [14] LEWERENZ M, MARONGIU A, WARNECKE A, et al. Differential voltage analysis as a tool for analyzing inhomogeneous aging: A case study for LiFePO4| Graphite cylindrical cells[J]. Journal of Power Sources, 2017, 368: 57–67. doi: 10.1016/j.jpowsour.2017.09.059
    [15] HUA Xiao, ZHANG Teng, OFFER G J, et al. Towards online tracking of the shuttle effect in lithium sulfur batteries using differential thermal voltammetry[J]. Journal of Energy Storage, 2019, 21: 765–772. doi: 10.1016/j.est.2019.01.002
    [16] WANG Zhenpo, YUAN Changgui, and LI Xiaoyu. Lithium Battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16–25. doi: 10.1109/TTE.2020.3028784
    [17] ZHOU Di, YIN Hongtao, FU Ping, et al. Prognostics for state of health of lithium-ion batteries based on Gaussian process regression[J]. Mathematical Problems in Engineering, 2018, 2018: 8358025. doi: 10.1155/2018/8358025
    [18] 陈勇, 郑瀚, 沈奇翔, 等. 基于改进免疫粒子群优化算法的室内可见光通信三维定位方法[J]. 电子与信息学报, 2021, 43(1): 101–107. doi: 10.11999/JEIT190936

    CHEN Yong, ZHENG Han, SHEN Qixiang, et al. Indoor three-dimensional positioning system based on visible light communication using improved immune PSO algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(1): 101–107. doi: 10.11999/JEIT190936
    [19] 闫群民, 马瑞卿, 马永翔, 等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48(4): 120–127. doi: 10.19665/j.issn1001-2400.2021.04.016

    YAN Qunmin, MA Ruiqing, MA Yongxiang, et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48(4): 120–127. doi: 10.19665/j.issn1001-2400.2021.04.016
    [20] 昝涛, 庞兆亮, 王民, 等. 基于VMD的滚动轴承早期故障诊断方法[J]. 北京工业大学学报, 2019, 45(2): 103–110. doi: 10.11936/bjutxb2017090012

    ZAN Tao, PANG Zhaoliang, WANG Min, et al. Early fault diagnosis method of rolling bearings based on VMD[J]. Journal of Beijing University of Technology, 2019, 45(2): 103–110. doi: 10.11936/bjutxb2017090012
    [21] LONG Bing, LI Xiangnan, GAO Xiaoyu, et al. Prognostics comparison of lithium-ion battery based on the shallow and deep neural networks model[J]. Energies, 2019, 12(17): 3271. doi: 10.3390/en12173271
    [22] XUE Zhiwei, ZHANG Yong, CHENG Cheng, et al. Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression[J]. Neurocomputing, 2020, 376: 95–102. doi: 10.1016/j.neucom.2019.09.074
    [23] ZHANG Chaolong, HE Yigang, YUAN Lifeng, et al. Capacity prognostics of lithium-ion batteries using EMD denoising and multiple kernel RVM[J]. IEEE Access, 2017, 5: 12061–12070. doi: 10.1109/ACCESS.2017.2716353
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  658
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-05-30
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回