高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种可解释的自由文本击键事件序列分类模型

张畅 韩继红 张玉臣 李福林

张畅, 韩继红, 张玉臣, 李福林. 一种可解释的自由文本击键事件序列分类模型[J]. 电子与信息学报, 2023, 45(2): 698-706. doi: 10.11999/JEIT211567
引用本文: 张畅, 韩继红, 张玉臣, 李福林. 一种可解释的自由文本击键事件序列分类模型[J]. 电子与信息学报, 2023, 45(2): 698-706. doi: 10.11999/JEIT211567
ZHANG Chang, HAN Jihong, ZHANG Yuchen, LI Fulin. An Interpretable Free-text Keystroke Event Sequence Classification Model[J]. Journal of Electronics & Information Technology, 2023, 45(2): 698-706. doi: 10.11999/JEIT211567
Citation: ZHANG Chang, HAN Jihong, ZHANG Yuchen, LI Fulin. An Interpretable Free-text Keystroke Event Sequence Classification Model[J]. Journal of Electronics & Information Technology, 2023, 45(2): 698-706. doi: 10.11999/JEIT211567

一种可解释的自由文本击键事件序列分类模型

doi: 10.11999/JEIT211567
详细信息
    作者简介:

    张畅:男,讲师,研究方向为网络安全、事件序列分类

    韩继红:女,教授,研究方向为网络安全、安全协议分析

    张玉臣:男,教授,研究方向为网络安全

    李福林:男,副教授,研究方向为网络安全

    通讯作者:

    张畅 zhang_chang_xd@163.com

  • 中图分类号: TP181

An Interpretable Free-text Keystroke Event Sequence Classification Model

  • 摘要: TypeNet是一种基于两层长短时记忆网(LSTM)分支结构的孪生网络模型,在自由文本击键事件序列分类任务上取得了很好的效果,但缺乏可解释性。为此,该文改进了TypeNet模型,提出一种基于单层LSTM分支结构的孪生网络模型TypeNet II。TypeNet II模型用多层感知机度量两个分支输出表征向量差的绝对值体现的特征序列的相似度。模型训练完毕后,用多元二项式回归模拟多层感知机部分,基于得到的多元二项式对模型进行解释。实验结果表明,TypeNet II模型的分类效果超出了已有的TypeNet模型,多元二项式回归的结果具有泛化性,表征向量差的绝对值与相似度量之间存在非线性关系。
  • 图  1  TypeNet II的结构

    图  2  决策层的多元多项式回归模型

    图  3  TypeNet II模型的训练和验证准确率

    图  4  分类效果随负样本类数量的变化情况

    图  5  表征向量维度为128的TypeNet II模型得到比较层的数值的小提琴图

    图  6  表征向量维度为64的TypeNet II模型得到比较层的数值的小提琴图

    图  8  被试者179773的特征序列对应的比较层和模型输出的可视化

    图  7  被试者175380的特征序列对应的比较层和模型输出的可视化

    表  1  TypeNet II模型的主要超参数

    LSTM层
    神经元数
    LSTM隐藏层间
    dropout比率
    LSTM与分支的输出Dense
    层间dropout比率
    分支的输出Dense层的神经元数和
    决策层输入Dense层的神经元数
    优化器初始
    学习率
    批大小
    参数值1280.20.5取集合{128,64,32,3,2}中的值Nadam0.001512
    下载: 导出CSV

    表  2  TypeNet II模型不同表征向量维度对应的最佳训练验证准确率

    128643232
    验证准确率(%)95.7993.9180.0882.4382.24
    下载: 导出CSV

    表  3  模型的分类效果

    TypeNet: contrastive lossTypeNet:
    triplest loss
    TypeNet:
    SM-CL, G=6
    TypeNet:
    SM-TL, G=6
    TypeNet II:
    表征向量为128维
    TypeNet II:
    表征向量为64维
    等错误率(%)5.4[13]2.2[13]2.42[13]1.85[13]1.762.12
    下载: 导出CSV

    表  4  两个表征向量维度下$ {P_{{\text{tr}}}} $上多元多项式$ f $不同自由度对应的$ {R^{\text{2}}} $

    12864
    自由度123123
    训练$ {R^2} $0.8200920.915693–0.5478540.8200320.919382–0.566558
    下载: 导出CSV

    表  5  两个表征向量维度下$ {P_{{\text{tr}}}} $上多元2阶项式岭回归结果

    12864
    $ \lambda $2.002.00
    测试$ {R^2} $0.940.92
    MSE0.010.02
    下载: 导出CSV

    表  6  ${{{P}}_{{\text{tr}}}}$上表征向量为128维,多元2阶多项式系数绝对值超过0.5的项

    v_95×v_96v_119v_8v_70v_63v_55v_115v_12v_89v_85v_29v_77v_37v_65v_84v_43v_111v_20
    系数0.500.560.560.640.650.660.690.740.750.770.850.870.920.921.261.281.291.47
    下载: 导出CSV

    表  7  ${{{P}}_{{\text{tr}}}}$上表征向量为64维,多元2阶多项式系数绝对值超过0.4的项

    v_21v_45v_56v_31×v_32v_13v_28v_27v_33
    系数–0.54–0.410.400.410.420.470.490.78
    下载: 导出CSV

    表  8  两个表征向量维度下${{{P}}_{{\text{te}}}}$上多项式岭回归结果

    12864
    $ \lambda $2.002.00
    测试R20.950.92
    MSE0.010.02
    下载: 导出CSV

    表  9  ${{{P}}_{{\text{te}}}}$上表征向量为128维,多元2阶多项式系数绝对值超过0.5的项

    v_70v_63v_119v_89v_55v_115v_29v_12v_77v_85v_65v_37v_43v_84v_111v_20
    系数0.540.560.600.640.640.720.760.840.840.850.890.941.141.151.171.31
    下载: 导出CSV

    表  10  ${{{P}}_{{\text{te}}}}$上表征向量为64维,多元2阶多项式系数绝对值超过0.4的项

    v_21v_31v18×v19v_13v_28v_27v_33
    系数–0.440.400.420.420.460.520.78
    下载: 导出CSV
  • [1] GAINES R S, LISOWSKI W, PRESS S J, et al. Authentication by keystroke timing: Some preliminary results[R]. R-2526-NSF, 1980.
    [2] ACIEN A, MORALES A, MONACO J V, et al. TypeNet: Deep learning keystroke biometrics[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4(1): 57–70. doi: 10.1109/TBIOM.2021.3112540
    [3] MONROSE F and RUBIN A D. Keystroke dynamics as a biometric for authentication[J]. Future Generation Computer Systems, 2000, 16(4): 351–359. doi: 10.1016/S0167-739X(99)00059-X
    [4] CURTIN M, TAPPERT C, VILLANI, et al. Keystroke biometric recognition on long-text input: A feasibility study[C]. Student/Faculty Research Day, CSIS, Pace University, New York City, USA, 2006.
    [5] AYOTTE B, HUANG Jiaju, BANAVAR M K, et al. Fast continuous user authentication using distance metric fusion of free-text keystroke data[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, USA, 2019.
    [6] AYOTTE B, BANAVAR M, HOU Daqing, et al. Fast free-text authentication via instance-based keystroke dynamics[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(4): 377–387. doi: 10.1109/TBIOM.2020.3003988
    [7] BERGADANO F, GUNETTI D, and PICARDI C. User authentication through keystroke dynamics[J]. ACM Transactions on Information and System Security, 2002, 5(4): 367–397. doi: 10.1145/581271.581272
    [8] GUNETTI D and PICARDI C. Keystroke analysis of free text[J]. ACM Transactions on Information and System Security, 2005, 8(3): 312–347. doi: 10.1145/1085126.1085129
    [9] KANG P and CHO S. Keystroke dynamics-based user authentication using long and free text strings from various input devices[J]. Information Sciences, 2015, 308: 72–93. doi: 10.1016/j.ins.2014.08.070
    [10] SINGH S and ARYA K V. Key classification: A new approach in free text keystroke authentication system[C]. 2011 Third Pacific-Asia Conference on Circuits, Communications and System (PACCS), Wuhan, China, 2011: 1–5.
    [11] TAPPERT C C, VILLANI M, and CHA S H. Keystroke biometric identification and authentication on long-text input[M]. WANG Ling and GENG Xin. Behavioral Biometrics for Human Identification: Intelligent Applications. Hershey: Medical Information Science Reference, 2010: 342–367.
    [12] MONACO J V and TAPPERT C C. The partially observable hidden Markov model and its application to keystroke dynamics[J]. Pattern Recognit, 2018, 76: 449–462. doi: 10.1016/j.patcog.2017.11.021
    [13] 芦效峰, 张胜飞, 伊胜伟. 基于CNN和RNN的自由文本击键模式持续身份认证[J]. 清华大学学报:自然科学版, 2018, 58(12): 1072–1078. doi: 10.16511/j.cnki.qhdxxb.2018.26.048

    LU Xiaofeng, ZHANG Shengfei, and YI Shengwei. Free-text keystroke continuous authentication using CNN and RNN[J]. Journal of Tsinghua University:Science and Technology, 2018, 58(12): 1072–1078. doi: 10.16511/j.cnki.qhdxxb.2018.26.048
    [14] DHAKAL V, FEIT A M, KRISTENSSON P O, et al. Observations on typing from 136 million keystrokes[C]. The 2018 CHI Conference on Human Factors in Computing Systems, Montreal, Canada, 2018.
    [15] MORALES A, FIERREZ J, ACIEN A, et al. SetMargin loss applied to deep keystroke biometrics with circle packing interpretation[J]. Pattern Recognition, 2021, 122: 108283. doi: 10.1016/j.patcog.2021.108283
    [16] AYOTTE B, BANAVAR M K, HOU Daqing, et al. Group leakage overestimates performance: A case study in keystroke dynamics[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, USA, 2021.
    [17] 美国国防部国防创新试验小组和美国陆军网络事业技术司令部定制开发BioTracker[EB/OL]. https://www.biometricupdate.com/201708/u-s-army-to-deploy-plurilock-behavioral-iometric-id-authentication-solution, 2017.
    [18] PATEL Y, OUAZZANE K, VASSILEV V T, et al. Keystroke dynamics using auto encoders[C]. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Oxford, UK, 2019.
    [19] LI Zengpeng, WANG Ding, and MORAIS E. Quantum-safe round-optimal password authentication for mobile devices[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(3): 1885–1899. doi: 10.1109/TDSC.2020.3040776
    [20] 汪定, 王平, 雷鸣. 基于RSA的网关口令认证密钥交换协议的分析与改进[J]. 电子学报, 2015, 43(1): 176–184. doi: 10.3969/j.issn.0372-2112.2015.01.028

    WANG Ding, WANG Ping, and LEI Ming. Cryptanalysis and improvement of gateway-oriented password authenticated key exchange protocol based on RSA[J]. Acta Electronica Sinica, 2015, 43(1): 176–184. doi: 10.3969/j.issn.0372-2112.2015.01.028
  • 加载中
图(8) / 表(10)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  214
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-05-22
  • 录用日期:  2022-06-01
  • 网络出版日期:  2022-06-07
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回