高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双选信道下OCDM系统低复杂度均衡

宁晓燕 宋禹良 孙志国 孙晶晶

宁晓燕, 宋禹良, 孙志国, 孙晶晶. 双选信道下OCDM系统低复杂度均衡[J]. 电子与信息学报, 2023, 45(2): 516-523. doi: 10.11999/JEIT211556
引用本文: 宁晓燕, 宋禹良, 孙志国, 孙晶晶. 双选信道下OCDM系统低复杂度均衡[J]. 电子与信息学报, 2023, 45(2): 516-523. doi: 10.11999/JEIT211556
NING Xiaoyan, SONG Yuliang, SUN Zhiguo, SUN Jingjing. Low Complexity Equalization Algorithm of OCDM Systems in Doubly-Selective Channels[J]. Journal of Electronics & Information Technology, 2023, 45(2): 516-523. doi: 10.11999/JEIT211556
Citation: NING Xiaoyan, SONG Yuliang, SUN Zhiguo, SUN Jingjing. Low Complexity Equalization Algorithm of OCDM Systems in Doubly-Selective Channels[J]. Journal of Electronics & Information Technology, 2023, 45(2): 516-523. doi: 10.11999/JEIT211556

双选信道下OCDM系统低复杂度均衡

doi: 10.11999/JEIT211556
基金项目: 先进船舶通信与信息技术工业和信息化部重点实验室(AMCIT2101-05),黑龙江省高精度卫星导航及海洋应用重点实验室开放基金(HKL-2021-Y02)
详细信息
    作者简介:

    宁晓燕:女,副教授,研究方向为5G通信物理层新技术、认知通信等

    宋禹良:男,硕士生,研究方向为5G通信物理层新技术

    孙志国:男,教授,研究方向为认知通信电子战

    孙晶晶:女,硕士生,研究方向为5G通信物理层信道编码技术

    通讯作者:

    孙志国 sunzhiguo@hrbeu.edu.cn

  • 中图分类号: TN929

Low Complexity Equalization Algorithm of OCDM Systems in Doubly-Selective Channels

Funds: Advanced Ship Communications and Information Technology Industry and Key Laboratory of Ministry of Information Technology (AMCIT2101-05), The Foundation of Heilongjiang Key Laboratory of High Precision Satellite Navigation and Marine Applications (HKL-2021-Y02)
  • 摘要: 正交Chirp复用(OCDM)是近年来提出的一种新的多载波体系,通过菲涅尔变换,获得一组正交Chirp信号,实现了CSS的最大频谱效率。该文介绍了OCDM系统的基本原理,重点研究了OCDM系统的低复杂度均衡算法。双选信道下,传统的MMSE均衡算法性能下降,提出一种基于近似带状矩阵的阻尼LSQR算法,作为求解稀疏矩阵的最小二乘迭代算法。为了缓解快速时变信道中的ICI,提出一种基于近似带状矩阵的LSQR-BDFE算法,结合判决反馈均衡,通过LSQR算法迭代计算。仿真结果表明,双选信道下,OCDM系统比OFDM系统有着更好的BER性能,所提出的LSQR-BDFE算法和带状阻尼LSQR算法,比MMSE均衡算法有着性能优势。
  • 图  1  数字实现的OCDM信号

    图  2  OCDM系统基带结构图

    图  3  近似带状矩阵图

    图  4  BDFE结构图

    图  5  多径信道下OCDM系统和OFDM系统BER曲线图

    图  6  双选信道下OCDM系统和OFDM系统BER曲线图($f_d = 0.08$)

    图  7  双选信道下OCDM系统BER曲线图($f_d = 0.16$)

    图  8  不同迭代次数下的BER曲线图

    表  1  3种均衡算法的计算复杂度

    算法复杂度
    MMSE-OP(A)$ N + 2N{\log _2}N $
    BD-LSQR(B)$ NQ + \left( {i + 2} \right)N{\log _2}N $
    LSQR-BDFE(C)$ N{Q^2} + \left( {i + 2} \right)N{\log _2}N $
    下载: 导出CSV
  • [1] OMAR M S and MA Xiaoli. Spectrum design for orthogonal chirp division multiplexing transmissions[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1990–1994. doi: 10.1109/LWC.2020.3010774
    [2] COOPER K B, DENGLER R J, LLOMBART N, et al. THz Imaging Radar for Standoff Personnel Screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169–182. doi: 10.1109/TTHZ.2011.2159556
    [3] KIM J H, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. doi: 10.1109/LGRS.2012.2213577
    [4] OUYANG Xing and ZHAO Jian. Orthogonal chirp division multiplexing[J]. IEEE Transactions on Communications, 2016, 64(9): 3946–3957. doi: 10.1109/TCOMM.2016.2594792
    [5] 吕鑫. OCDM-OFDM雷达通信一体化信号设计与研究[D]. [硕士论文], 南京理工大学, 2019.

    LV Xin. Design and research of OCDM-OFDM radar communication integrated signal[D]. [Master dissertation], Nanjing University of Science and Technology, 2019.
    [6] ZHU Peibin, XU Xiaomei, TU Xingbin, et al. Anti-multipath orthogonal chirp division multiplexing for underwater acoustic communication[J]. IEEE Access, 2020, 8: 13305–13314. doi: 10.1109/ACCESS.2020.2966072
    [7] BOUVET P J, AUFFRET Y, and AUBRY C. On the analysis of orthogonal chirp division multiplexing for shallow water underwater acoustic communication[C]. Proceedings of OCEANS 2017-Aberdeen, Aberdeen, UK, 2017: 1–5.
    [8] WANG Xin, JIANG Zhe, and SHEN Xiaohong. Low complexity equalization of orthogonal chirp division multiplexing in doubly-selective channels[J]. Sensors, 2020, 20(11): 3125. doi: 10.3390/s20113125
    [9] RUGINI L, BANELLI P, and LEUS G. Low-complexity banded equalizers for OFDM systems in doppler spread channels[J]. EURASIP Journal on Advances in Signal Processing, 2006, 2006: 067404. doi: 10.1155/ASP/2006/67404
    [10] OUYANG Xing and ZHAO Jian. Orthogonal chirp division multiplexing for coherent optical fiber communications[J]. Journal of Lightwave Technology, 2016, 34(18): 4376–4386. doi: 10.1109/JLT.2016.2598575
    [11] MARTONE M. A multicarrier system based on the fractional fourier transform for time-frequency-selective channels[J]. IEEE Transactions on Communications, 2001, 49(6): 1011–1020. doi: 10.1109/26.930631
    [12] 陈恩庆, 陶然, 张卫强, 等. 一种基于分数阶傅里叶变换的OFDM系统及其均衡算法[J]. 电子学报, 2007, 35(3): 409–414. doi: 10.3321/j.issn:0372-2112.2007.03.005

    CHEN Enqing, TAO Ran, ZHANG Weiqiang, et al. The OFDM system and equalization algorithm based on the fractional Fourier transform[J]. Acta Electronica Sinica, 2007, 35(3): 409–414. doi: 10.3321/j.issn:0372-2112.2007.03.005
    [13] YIN Yufang. The CPDA detector for the MIMO OCDM system[C]. Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems, Chengdu, China, 2021: 1001–1004.
    [14] ASIF A and MOURA J M F. Block matrices with L-block-banded inverse: Inversion algorithms[J]. IEEE Transactions on Signal Processing, 2005, 53(2): 630–642. doi: 10.1109/TSP.2004.840709
    [15] FANG Kun, RUGINI L, and LEUS G. Low-complexity block turbo equalization for OFDM systems in time-varying channels[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5555–5566. doi: 10.1109/TSP.2008.929129
    [16] 赵晓君, 曹琲琲. OFDM系统下基于阻尼LSQR的低复杂度检测算法研究[J]. 移动通信, 2017, 41(16): 75–80. doi: 10.3969/j.issn.1006-1010.2017.16.015

    ZHAO Xiaojun and CAO Feifei. Research on low-complexity detection algorithm based on damped LSQR in OFDM system[J]. Mobile Communications, 2017, 41(16): 75–80. doi: 10.3969/j.issn.1006-1010.2017.16.015
    [17] HAN Hua and WU Lenan. Low complexity LSQR-based block decision feedback equalizer for OFDM systems over rapidly time-varying channels[C]. Proceedings of 2010 International Conference on Communications and Mobile Computing, Shenzhen, China, 2010: 438–441.
    [18] SCHNITER P. Low-complexity equalization of OFDM in doubly selective channels[J]. IEEE Transactions on Signal Processing, 2004, 52(4): 1002–1011. doi: 10.1109/TSP.2004.823503
    [19] RUGINI L, BANELLI P, and LEUS G. Simple equalization of time-varying channels for OFDM[J]. IEEE Communications Letters, 2005, 9(7): 619–621. doi: 10.1109/LCOMM.2005.1461683
    [20] HRYCAK T, DAS S, MATZ G, et al. Low complexity equalization for doubly selective channels modeled by a basis expansion[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5706–5719. doi: 10.1109/TSP.2010.2063426
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  782
  • HTML全文浏览量:  489
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回