高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向窃听用户的RIS-MISO系统鲁棒资源分配算法

徐勇军 徐然 周继华 万杨亮 黄崇文 刘伯红

徐勇军, 徐然, 周继华, 万杨亮, 黄崇文, 刘伯红. 面向窃听用户的RIS-MISO系统鲁棒资源分配算法[J]. 电子与信息学报, 2022, 44(7): 2253-2263. doi: 10.11999/JEIT211537
引用本文: 徐勇军, 徐然, 周继华, 万杨亮, 黄崇文, 刘伯红. 面向窃听用户的RIS-MISO系统鲁棒资源分配算法[J]. 电子与信息学报, 2022, 44(7): 2253-2263. doi: 10.11999/JEIT211537
XU Yongjun, XU Ran, ZHOU Jihua, WAN Yangliang, HUANG Chongwen, LIU Bohong. Robust Resource Allocation Algorithm for RIS-Assisted MISO Systems with Eavesdroppers[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2253-2263. doi: 10.11999/JEIT211537
Citation: XU Yongjun, XU Ran, ZHOU Jihua, WAN Yangliang, HUANG Chongwen, LIU Bohong. Robust Resource Allocation Algorithm for RIS-Assisted MISO Systems with Eavesdroppers[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2253-2263. doi: 10.11999/JEIT211537

面向窃听用户的RIS-MISO系统鲁棒资源分配算法

doi: 10.11999/JEIT211537
基金项目: 国家自然科学基金(61601071, 62071078),重庆市自然科学基金(cstc2019jcyj-xfkxX0002)
详细信息
    作者简介:

    徐勇军:男,1986年生,副教授,硕士生导师,研究方向为智能反射面、鲁棒资源分配等

    徐然:男,1998年生,硕士生,研究方向为智能反射面、鲁棒资源分配等

    周继华:男,1979年生,教授,博士生导师,研究方向为无线网络、资源分配等

    万杨亮:男,1980年生,工程师,研究方向为无线网络、资源分配等

    黄崇文:男,1986年生,教授,博士生导师,研究方向为智能超表面/全息智能MIMO通信等

    刘伯红:男,1973年生,副教授,硕士生导师,研究方向为云计算、无线网络等

    通讯作者:

    周继华 jhzhou@ict.ac.cn

  • 中图分类号: TN929.5

Robust Resource Allocation Algorithm for RIS-Assisted MISO Systems with Eavesdroppers

Funds: The National Natural Science Foundation of China (61601071, 62071078), The Natural Science Foundation of Chongqing (cstc2019jcyj-xfkxX0002)
  • 摘要: 针对信道不确定性影响、用户信息泄露和能效提升等问题,该文提出一种基于不完美信道状态信息的可重构智能反射面(RIS)多输入单输出系统鲁棒资源分配算法。首先,考虑能量收集最小接收功率约束、合法用户最小保密速率约束、基站最大发射功率约束及RIS相移约束,基于有界信道不确定性,建立一个联合优化基站主动波束、能量波束、RIS相移矩阵的多变量耦合非线性资源分配问题。然后,利用Dinkelbach,S-procedure和交替优化方法,将原非凸问题转换成确定性凸优化问题,并提出一种基于连续凸近似的交替优化算法。仿真结果表明,与传统非鲁棒算法对比,所提算法具有较低的中断概率。
  • 图  1  系统模型

    图  2  仿真场景

    图  3  系统能效收敛图

    图  4  系统能效与基站发射功率阈值之间的关系

    图  5  能量接收机收集的功率与接收机位置的关系

    图  6  系统总能效与基站发射天线数之间的关系

    图  7  系统总能效与用户保密速率门限之间的关系

    图  8  保密中断概率与窃听信道的最大估计误差之间的关系

    表  1  基于连续凸近似的交替优化算法

     (1)初始化参数:相移向量$ {{\boldsymbol{q}}^{(0)}} $,波束矩阵$ \{ {\boldsymbol{W}}_k^{(0)}\} ,{\boldsymbol{V}}_r^{(0)} $,初始迭代次数$ i = 1 $,最大迭代次数$ {i_{\max }} $,初始能效$ {\eta ^{(0)}} = 0 $,收敛精度$ \varepsilon $;
     (2)重复
     (a)通过给定的相移$ {{\boldsymbol{q}}^{(i - 1)}} $和$ {\eta ^{(i - 1)}} $求解问题式(32)获得$ \{ {\boldsymbol{W}}_k^{(i)}\} ,{\boldsymbol{V}}_r^{(i)} $;
     (b)更新$ {\boldsymbol{W}}_k^{(i + 1)}{\text{ = }}{\boldsymbol{W}}_k^{(i)} $,$ {\boldsymbol{V}}_r^{(i + 1)}{\text{ = }}{\boldsymbol{V}}_r^{(i)} $,根据$ {{\boldsymbol{Q}}^{(i - 1)}} $求解问题式(45)获得$ {{\boldsymbol{Q}}^{(i)}} $,由$ {{\boldsymbol{Q}}^{(i)}} = {{\boldsymbol{\bar q}}^{(i)}}\;{({{\boldsymbol{\bar q}}^{(i)}})^{\text{H}}} $和$ {{\boldsymbol{q}}^{(i)}}\; = {[{{\boldsymbol{\bar q}}^{(i)}}]_{(\;1:N)}} $获得$ {{\boldsymbol{q}}^{(i)}} $;
     (c)更新$ {{\boldsymbol{Q}}^{(i + 1)}}{\text{ = }}{{\boldsymbol{Q}}^{(i)}} $,$ {\eta ^{(i + 1)}} = {\eta ^{(i)}} $,$ i = i + 1 $;
     (3)直到 $\left| {\dfrac{ { {\eta ^{(i + 1)} } - {\eta ^{(i)} } } }{ { {\eta ^{(i)} } } }} \right| \le \varepsilon$,获得$ \{ {\boldsymbol{W}}_k^*\} ,{\boldsymbol{V}}_r^*,{{\boldsymbol{q}}^*} $
    下载: 导出CSV
  • [1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [2] 徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175

    XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175
    [3] ZARGARI S, FARAHMAND S, ABOLHASSANI B, et al. Robust active and passive beamformer design for IRS-aided downlink MISO PS-SWIPT with a nonlinear energy harvesting model[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 2027–2041. doi: 10.1109/TGCN.2021.3093825
    [4] LIU Jingxian, XIONG Ke, LU Yang, et al. Energy efficiency in secure IRS-aided SWIPT[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1884–1888. doi: 10.1109/LWC.2020.3006837
    [5] GUO Songtao, SHI Yawei, YANG Yuanyuan, et al. Energy efficiency maximization in mobile wireless energy harvesting sensor networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(7): 1524–1537. doi: 10.1109/TMC.2017.2773067
    [6] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [7] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798
    [8] ZHI Kangda, PAN Cunhua, REN Hong, et al. Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI[J]. IEEE Transactions on Communications, 2022, 70(5): 3558–3574. doi: 10.1109/TCOMM.2022.3162580
    [9] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [10] XU Dongfang, YU Xianghao, JAMALI V, et al. Resource allocation for large IRS-assisted SWIPT systems with non-linear energy harvesting model[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021: 1–7.
    [11] KHALILI A, ZARGARI S, WU Qingqing, et al. Multi-objective resource allocation for IRS-aided SWIPT[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1324–1328. doi: 10.1109/LWC.2021.3065844
    [12] ZARGARI S, KHALILI A, WU Qingqing, et al. Max-min fair energy-efficient beamforming design for intelligent reflecting surface-aided SWIPT systems with non-linear energy harvesting model[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5848–5864. doi: 10.1109/TVT.2021.3077477
    [13] 徐勇军, 高正念, 王茜竹, 等. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法[J]. 电子与信息学报. 待发表. doi: 10.11999/JEIT210714.

    XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology. 2021. To be publishied. doi: 10.11999/JEIT210714.
    [14] XU Dongfang, YU Xianghao, SUN Yan, et al. Resource allocation for secure IRS-assisted multiuser MISO systems[C]. 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, USA, 2019: 1–6.
    [15] ZHOU Gui, PAN Cunhua, REN Hong, et al. Secure wireless communication in RIS-aided MISO system with hardware impairments[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1309–1313. doi: 10.1109/LWC.2021.3064992
    [16] TANG Xiao, LAN Xunqiang, ZHAI Daosen, et al. Securing wireless transmissions with RIS-receiver coordination: Passive beamforming and active jamming[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6260–6265. doi: 10.1109/TVT.2021.3079930
    [17] NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Simultaneous transmission and reflection reconfigurable intelligent surface assisted secrecy MISO networks[J]. IEEE Communications Letters, 2021, 25(11): 3498–3502. doi: 10.1109/LCOMM.2021.3109164
    [18] XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040
    [19] DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/mnsc.13.7.492
    [20] ZHOU Gui, PAN Cunhua, REN Hong, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092–5106. doi: 10.1109/TSP.2020.3019666
    [21] WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293
    [22] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [23] NG D W K, LO E S, and SCHOBER R. Robust beamforming for secure communication in systems with wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2014, 13(8): 4599–4615. doi: 10.1109/TWC.2014.2314654
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1118
  • HTML全文浏览量:  341
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-06-02
  • 录用日期:  2022-06-07
  • 网络出版日期:  2022-06-12
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回