高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于异质图表达学习的跨境电商推荐模型

张瑾 朱桂祥 王宇琛 郑烁佳 陈镜潞

张瑾, 朱桂祥, 王宇琛, 郑烁佳, 陈镜潞. 基于异质图表达学习的跨境电商推荐模型[J]. 电子与信息学报, 2022, 44(11): 4008-4017. doi: 10.11999/JEIT211524
引用本文: 张瑾, 朱桂祥, 王宇琛, 郑烁佳, 陈镜潞. 基于异质图表达学习的跨境电商推荐模型[J]. 电子与信息学报, 2022, 44(11): 4008-4017. doi: 10.11999/JEIT211524
ZHANG Jin, ZHU Guixiang, WANG Yuchen, ZHENG Shuojia, CHEN Jinglu. The Recommender System of Cross-border E-commerce Based on Heterogeneous Graph Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4008-4017. doi: 10.11999/JEIT211524
Citation: ZHANG Jin, ZHU Guixiang, WANG Yuchen, ZHENG Shuojia, CHEN Jinglu. The Recommender System of Cross-border E-commerce Based on Heterogeneous Graph Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4008-4017. doi: 10.11999/JEIT211524

基于异质图表达学习的跨境电商推荐模型

doi: 10.11999/JEIT211524
基金项目: 国家自然科学基金(91646204, 71372188),江苏省国际创新合作项目(BZ2020008)
详细信息
    作者简介:

    张瑾:女,1984年生,硕士,实验师,研究方向为推荐系统、深度学习

    朱桂祥:男,1988年生,博士,讲师,研究方向为商务智能,推荐系统

    通讯作者:

    朱桂祥 zgx881205@gmail.com

  • 1) https://huggingface.co/docs/transformers/model_doc/bert
  • 2) https://pypi.org/project/gensim/
  • 中图分类号: TP391

The Recommender System of Cross-border E-commerce Based on Heterogeneous Graph Neural Network

Funds: The National Natural Science Foundation of China (91646204, 71372188), The International Innovation Cooperation Project of Jiangsu Province (BZ2020008)
  • 摘要: 跨境电商产品推荐已经成为电子商务领域新兴的研究议题之一。由于电商产品信息复杂多样、“用户-产品”关联矩阵极为稀疏并且冷启动问题突出,因此传统的协同过滤推荐模型很难奏效。而改进的深度协同过滤模型,只考虑了用户对产品的“显式”和“隐式”的反馈信息,忽视了由用户与项目组成的图结构信息,推荐性能很难满足平台和用户的要求。为了解决这些难题,该文提出基于异质图表达学习的图神经网络模型(HGNR)用于个性化的跨境电商产品推荐,该模型具有2个显著的优势:(1) 构造“用户-产品-主题”3部图作为模型的输入,通过图卷积神经网络(GCN)在异质图上进行高质量信息传播和聚合;(2)能够获取高质量的用户和产品表征向量,实现了用户和产品复杂交互关系的建模。在真实的跨境电商订单数据集上的实验结果表明,HGNR模型不仅在推荐性能上表现出色,还能有效提升冷启动用户的推荐准确率,与9种推荐基准算法相比,HGNR在评价指标HitRate@10, Item-coverage@10, MRR@10上至少提升了3.33%, 0.91%, 0.54%。
  • 图  1  “用户-产品-主题”3部图

    图  2  HGNR模型框架图

    图  3  Dropout对HGNR的影响

    图  4  针对冷启动用户的推荐性能

    表  1  总体性能比较(%)

    模型HR@3
    Item-c@3
    MRR@3
    HR@5
    Item-c@5
    MRR@5
    HR@10
    Item-c@10
    MRR@10
    POP2.901.8562.338.973.0934.2330.776.1721.19
    ICF22.9291.9878.6727.5293.8369.3833.3394.4459.59
    UCF24.9779.0177.1729.0885.1969.5233.4993.2162.11
    SVD7.8865.7361.1412.3478.8650.0718.2686.1545.53
    NMF9.3768.7163.5514.5179.1853.1120.0685.7551.36
    CDL29.0388.2176.5435.2390.4870.9738.5593.3263.42
    DeepFM30.6789.4579.9834.7890.6771.0540.7693.4762.71
    NGCF42.6590.2880.1446.8791.8772.0550.8794.2165.37
    NGPR46.7991.2380.6750.3192.8574.6754.6195.9166.07
    HGNR48.1292.2182.2451.6594.5674.2956.4396.7866.43
    注: HR和Item-c分别代表HitRate和Item-coverage
    下载: 导出CSV

    表  2  GNN网络层数对推荐性能的影响(%)

    模型HitRate@10Item-c@10MRR@10
    HGNR-1 GNN Layer51.2793.8462.18
    HGNR-2 GNN Layer56.4396.7866.43
    HGNR-3 GNN Layer53.9194.6363.73
    下载: 导出CSV
  • [1] 孙光福, 吴乐, 刘淇, 等. 基于时序行为的协同过滤推荐算法[J]. 软件学报, 2013, 24(11): 2721–2733. doi: 10.3724/SP.J.1001.2013.04478

    SUN Guangfu, WU Le, LIU Qi, et al. Recommendations based on collaborative filtering by exploiting sequential behaviors[J]. Journal of Software, 2013, 24(11): 2721–2733. doi: 10.3724/SP.J.1001.2013.04478
    [2] RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: An open architecture for collaborative filtering of netnews[C]. The 1994 ACM Conference on Computer Supported Cooperative Work, New York, USA, 1994: 175–186.
    [3] LINDEN G, SMITH B, and YORK J. Amazon. com recommendations: Item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1): 76–80. doi: 10.1109/MIC.2003.1167344
    [4] KOREN Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]. The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2008: 426-434.
    [5] WANG Yuxiong and ZHANG Yujin. Nonnegative matrix factorization: A comprehensive review[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 25(6): 1336–1353. doi: 10.1109/TKDE.2012.51
    [6] PAZZANI M J and BILLSUS D. Content-based Recommendation Systems[M]. BRUSILOVSKY P, KOBSA A, and NEJDL W. The Adaptive Web. Berlin: Springer, 2007: 325–341.
    [7] BURKE R. Hybrid WEB Recommender Systems[M]. BRUSILOVSKY P, KOBSA A, and NEJDL W. The Adaptive Web. Berlin: Springer, 2007: 377–408.
    [8] XUE Hongjian, DAI Xinyu, ZHANG Jianbing, et al. Deep matrix factorization models for recommender systems[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017, 17: 3203–3209.
    [9] HE Xiangnan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]. The 26th International Conference on World Wide Web, New York, USA, 2017: 173–182.
    [10] WANG Hao, WANG Naiyan, and YEUNG D Y. Collaborative deep learning for recommender systems[C]. The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2015: 1235–1244.
    [11] GUO Huifeng, TANG Ruiming, YE Yunming, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 1725–1731.
    [12] HU Zhibin, WANG Jiachun, YAN Yan, et al. Neural graph personalized ranking for Top-N recommendation[J]. Knowledge-Based Systems, 2021, 213: 106426. doi: 10.1016/j.knosys.2020.106426
    [13] HU Linmei, LI Chen, SHI Chuan, et al. Graph neural news recommendation with long-term and short-term interest modeling[J]. Information Processing & Management, 2020, 57(2): 102142. doi: 10.1016/j.ipm.2019.102142
    [14] WU Shiwen, SUN Fei, ZHANG Wentao, et al. Graph neural networks in recommender systems: A survey[J]. arXiv preprint arXiv, 2011.02260v2, 2020.
    [15] WANG Xiao, JI Houye, SHI Chuan, et al. Heterogeneous graph attention network[C]. World Wide Web Conference, New York, USA, 2019: 2022–2032.
    [16] 朱桂祥, 曹杰. 基于主题序列模式的旅游产品推荐引擎[J]. 计算机研究与发展, 2018, 55(5): 920–932. doi: 10.7544/issn1000-1239.2018.20160926

    ZHU Guixiang and CAO Jie. A recommendation engine for travel products based on topic sequential patterns[J]. Journal of Computer Research and Development, 2018, 55(5): 920–932. doi: 10.7544/issn1000-1239.2018.20160926
    [17] 王智强, 梁吉业, 李茹. 基于信息融合的概率矩阵分解链路预测方法[J]. 计算机研究与发展, 2019, 56(2): 306–318. doi: 10.7544/issn1000-1239.2019.20170746

    WANG Zhiqiang, LIANG Jiye, and LI Ru. Probability matrix factorization for link prediction based on information fusion[J]. Journal of Computer Research and Development, 2019, 56(2): 306–318. doi: 10.7544/issn1000-1239.2019.20170746
    [18] 陈晋音, 黄国瀚, 张敦杰, 等. 一种面向图神经网络的图重构防御方法[J]. 计算机研究与发展, 2021, 58(5): 1075–1091. doi: 10.7544/issn1000-1239.2021.20200935

    CHEN Jinyin, HUANG Guohan, ZHANG Dunjie, et al. GRD-GNN: Graph reconstruction defense for graph neural network[J]. Journal of Computer Research and Development, 2021, 58(5): 1075–1091. doi: 10.7544/issn1000-1239.2021.20200935
    [19] 李涵, 严明玉, 吕征阳, 等. 图神经网络加速结构综述[J]. 计算机研究与发展, 2021, 58(6): 1204–1229. doi: 10.7544/issn1000-1239.2021.20210166

    LI Han, YAN Mingyu, LV Zhengyang, et al. Survey on graph neural network acceleration architectures[J]. Journal of Computer Research and Development, 2021, 58(6): 1204–1229. doi: 10.7544/issn1000-1239.2021.20210166
    [20] XU K, HU Weihua, LESKOVEC J, et al. How powerful are graph neural networks?[J]. arXiv preprint arXiv: 1810.00826, 2018.
    [21] ZHANG Shuai, YAO Lina, SUN Aixin, et al. Deep learning based recommender system: A survey and new perspectives[J]. ACM Computing Surveys, 2020, 52(1): 5. doi: 10.1145/3285029
    [22] WANG Shoujin, HU Liang, WANG Yan, et al. Graph learning approaches to recommender systems: A review[J]. arXiv preprint arXiv: 2004.11718, 2020.
    [23] WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[C]. The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, USA, 2019: 165–174.
    [24] PAN Zhiqiang, CAI Fei, CHEN Wanyu, et al. Star graph neural networks for session-based recommendation[C]. The 29th ACM International Conference on Information & Knowledge Management, New York, USA, 2020: 1195–1204.
    [25] WU Shu, TANG Yuyuan, ZHU Yanqiao, et al. Session-based recommendation with graph neural networks[C]. The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, USA, 2019: 346–353.
    [26] BLEI D M, NG A Y, and JORDAN M I. Latent dirichlet allocation[J]. The Journal of Machine Learning Research, 2003, 3(1): 993–1022.
    [27] ZHANG Mengqi, WU Shu, GAO Meng, et al. Personalized graph neural networks with attention mechanism for session-aware recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, To be pulished.
    [28] RONG Yu, HUANG Wenbing, XU Tingyang, et al. Dropedge: Towards deep graph convolutional networks on node classification[J]. arXiv preprint arXiv: 1907.10903, 2019.
    [29] CAO Jie, WANG Youquan, HE Jing, et al. Predicting grain losses and waste rate along the entire chain: A multitask multigated recurrent unit autoencoder based method[J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 4390–4400. doi: 10.1109/TII.2020.3030709
    [30] CAO Jie, WANG Youquan, BU Zhan, et al. . Compactness preserving community computation via a network generative process[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, To be published. doi: 10.1109/TETCI.2021.3110086.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  681
  • HTML全文浏览量:  823
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 修回日期:  2022-04-03
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回