高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机通信网络物理层安全传输技术

东润泽 王布宏 冯登国 曹堃锐 田继伟 程天昊 刁丹玉

东润泽, 王布宏, 冯登国, 曹堃锐, 田继伟, 程天昊, 刁丹玉. 无人机通信网络物理层安全传输技术[J]. 电子与信息学报, 2022, 44(3): 803-814. doi: 10.11999/JEIT211509
引用本文: 东润泽, 王布宏, 冯登国, 曹堃锐, 田继伟, 程天昊, 刁丹玉. 无人机通信网络物理层安全传输技术[J]. 电子与信息学报, 2022, 44(3): 803-814. doi: 10.11999/JEIT211509
DONG Runze, WANG Buhong, FENG Dengguo, CAO Kunrui, TIAN Jiwei, CHENG Tianhao, DIAO Danyu. Physical Layer Security Transmission Technology of UAV Communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(3): 803-814. doi: 10.11999/JEIT211509
Citation: DONG Runze, WANG Buhong, FENG Dengguo, CAO Kunrui, TIAN Jiwei, CHENG Tianhao, DIAO Danyu. Physical Layer Security Transmission Technology of UAV Communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(3): 803-814. doi: 10.11999/JEIT211509

无人机通信网络物理层安全传输技术

doi: 10.11999/JEIT211509
基金项目: 国家自然科学基金(62101560),国防科技大学科研计划基金(ZK21-44)
详细信息
    作者简介:

    东润泽:男,1995年生,博士生,研究方向为UAV与大规模MIMO物理层安全

    王布宏:男,1975年生,教授,研究方向为空管网络安全与多天线物理层安全

    冯登国:男,1965年生,中国科学院院士,研究员,研究方向为网络与信息安全

    曹堃锐:男,1989年生,讲师,研究方向为无线物理层安全和UAV高效通信

    田继伟:男,1993年生,讲师,研究方向为人工智能安全与智能电网安全

    程天昊:男,1996年生,博士生,研究方向为UAV智能反射面物理层安全

    刁丹玉:女,1998年生,硕士生,研究方向为UAV与NOMA物理层安全

    通讯作者:

    王布宏 wbhgroup@aliyun.com

  • 中图分类号: TN918.1

Physical Layer Security Transmission Technology of UAV Communication Networks

Funds: The National Natural Science Foundation of China (62101560), The Research Fund of National University of Defense Technology (ZK21-44)
  • 摘要: 下一代通信网络可利用无人机的高移动性满足其高覆盖、低延迟等通信需求,但安全传输的问题也由于无线信道的广播特性与日益增加的通信节点数量亟待解决。因为无人机是资源受限的空中平台,上层加密技术难以在无人机通信网络中发挥同等有效的作用。物理层安全的本质是对信道进行人为设计从而实现合法信道与窃听信道的差异最大化,在无人机通信网络中应用物理层安全传输技术能够实现保密传输与能量效率的折中。该文综述当前国内外无人机通信网络物理层安全传输技术的研究,先分场景介绍典型的物理层安全传输技术,然后分析物理层安全传输技术应用在无人机通信网络中面临的挑战,并对未来无人机通信网络物理层安全传输技术发展的新场景、新技术和新方法进行展望,以期为无人机通信网络物理层安全传输技术的研究提供新的视角。
  • 图  1  UAV场景划分

    图  2  UAV作为基站或合法用户

    图  3  UAV作为中继及协作干扰机

    图  4  UAV集群作为通信网络中的合法用户

  • [1] IMT-2020(5G)推进组. 5G无人机应用白皮书[R]. 2018.
    [2] 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 15–40. doi: 10.7527/S1000-6893.2019.23732

    WANG Xiangke, LIU Zhihong, CONG Yirui, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 15–40. doi: 10.7527/S1000-6893.2019.23732
    [3] ZHAO Nan, CHENG Fen, YU F R, et al. Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment[J]. IEEE Transactions on Communications, 2018, 66(5): 2281–2294. doi: 10.1109/TCOMM.2018.2792014
    [4] MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334–2360. doi: 10.1109/COMST.2019.2902862
    [5] ZENG Yong, LYU J, and ZHANG Rui. Cellular-connected UAV: Potential, challenges, and promising technologies[J]. IEEE Wireless Communications, 2019, 26(1): 120–127. doi: 10.1109/MWC.2018.1800023
    [6] ZENG Yong, WU Qingqing, and ZHANG Rui. Accessing from the sky: A tutorial on UAV communications for 5G and beyond[J]. Proceedings of the IEEE, 2019, 107(12): 2327–2375. doi: 10.1109/JPROC.2019.2952892
    [7] SUN Xiaofang, NG D W K, DING Zhiguo, et al. Physical layer security in UAV systems: Challenges and opportunities[J]. IEEE Wireless Communications, 2019, 26(5): 40–47. doi: 10.1109/MWC.001.1900028
    [8] WU Qingqing, MEI Weidong, and ZHANG Rui. Safeguarding wireless network with UAVs: A physical layer security perspective[J]. IEEE Wireless Communications, 2019, 26(5): 12–18. doi: 10.1109/MWC.001.1900050
    [9] LI Bin, FEI Zesong, ZHANG Yan, et al. Secure UAV communication networks over 5G[J]. IEEE Wireless Communications, 2019, 26(5): 114–120. doi: 10.1109/MWC.2019.1800458
    [10] 黄开枝, 王少禹, 许晓明, 等. 毫米波下行多用户系统安全混合波束成形算法[J]. 电子与信息学报, 2019, 41(4): 952–958. doi: 10.11999/jeit180713

    HUANG Kaizhi, WANG Shaoyu, XU Xiaoming, et al. Security hybrid beamforming algorithm for millimeter wave downlink multiuser system[J]. Journal of Electronics &Information Technology, 2019, 41(4): 952–958. doi: 10.11999/jeit180713
    [11] CAO Kunrui, WANG Buhong, DING Haiyang, et al. Improving physical layer security of uplink NOMA via energy harvesting jammers[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 786–799. doi: 10.1109/TIFS.2020.3023277
    [12] CAO Kunrui, WANG Buhong, DING Haiyang, et al. On the security enhancement of uplink NOMA systems with jammer selection[J]. IEEE Transactions on Communications, 2020, 68(9): 5747–5763. doi: 10.1109/TCOMM.2020.3003665
    [13] LIN Zhi, LIN Min, ZHU Weiping, et al. Robust secure beamforming for wireless powered cognitive satellite-terrestrial networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 567–580. doi: 10.1109/TCCN.2020.3016096
    [14] 黄开枝, 金梁, 陈亚军, 等. 无线物理层密钥生成技术发展及新的挑战[J]. 电子与信息学报, 2020, 42(10): 2330–2341. doi: 10.11999/JEIT200002

    HUANG Kaizhi, JIN Liang, CHEN Yajun, et al. Development of wireless physical layer key generation technology and new challenges[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2330–2341. doi: 10.11999/JEIT200002
    [15] MAMAGHANI M T and HONG Yi. Joint trajectory and power allocation design for secure artificial noise aided UAV communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2850–2855. doi: 10.1109/TVT.2021.3057397
    [16] LI Sixian, DUO Bin, DI RENZO M, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6402–6417. doi: 10.1109/TWC.2021.3073746
    [17] CUI Miao, ZHANG Guangchi, WU Qingqing, et al. Robust trajectory and transmit power design for secure UAV communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 9042–9046. doi: 10.1109/TVT.2018.2849644
    [18] ZHU Yongxu, ZHENG Gan, and FITCH M. Secrecy rate analysis of UAV-enabled mmWave networks using matérn hardcore point processes[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(7): 1397–1409. doi: 10.1109/JSAC.2018.2825158
    [19] YE Jia, ZHANG Chao, LEI Hongjiang, et al. Secure UAV-to-UAV systems with spatially random UAVs[J]. IEEE Wireless Communications Letters, 2019, 8(2): 564–567. doi: 10.1109/LWC.2018.2879842
    [20] 黄开枝, 金梁, 钟州. 5G物理层安全技术——以通信促安全[J]. 中兴通讯技术, 2019, 25(4): 43–49. doi: 10.12142/ZTETJ.201904008

    HUANG Kaizhi, JIN Liang, and ZHONG Zhou. 5G physical layer security technology: Enhancing security by communication[J]. ZTE Technology Journal, 2019, 25(4): 43–49. doi: 10.12142/ZTETJ.201904008
    [21] WYNER A D. The wire-tap channel[J]. The Bell System Technical Journal, 1975, 54(8): 1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x
    [22] GERBRACHT S, SCHEUNERT C, and JORSWIECK E A. Secrecy outage in MISO systems with partial channel information[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 704–716. doi: 10.1109/TIFS.2011.2181946
    [23] GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180–2189. doi: 10.1109/TWC.2008.060848
    [24] LV Lu, DING Zhiguo, NI Qiang, et al. Secure MISO-NOMA transmission with artificial noise[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6700–6705. doi: 10.1109/TVT.2018.2811733
    [25] HUANG Yuzhen, WANG Jinlong, ZHONG Caijun, et al. Secure transmission in cooperative relaying networks with multiple antennas[J]. IEEE Transactions on Wireless Communications, 2016, 15(10): 6843–6856. doi: 10.1109/TWC.2016.2591940
    [26] 任品毅, 唐晓. 面向5G的物理层安全技术综述[J]. 北京邮电大学学报, 2018, 41(5): 69–77. doi: 10.13190/j.jbupt.2018-205

    REN Pinyi and TANG Xiao. A review on physical layer security techniques for 5G[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(5): 69–77. doi: 10.13190/j.jbupt.2018-205
    [27] WANG Ning, WANG P, ALIPOUR-FANID A, et al. Physical-layer security of 5G wireless networks for IoT: Challenges and opportunities[J]. IEEE Internet of Things Journal, 2019, 6(5): 8169–8181. doi: 10.1109/JIOT.2019.2927379
    [28] WU Yongpeng, KHISTI A, XIAO Chengshan, et al. A survey of physical layer security techniques for 5G wireless networks and challenges ahead[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(4): 679–695. doi: 10.1109/JSAC.2018.2825560
    [29] TIAN Xiaowen, LIU Qian, WANG Zihuan, et al. Secure hybrid beamformers design in mmWave MIMO wiretap systems[J]. IEEE Systems Journal, 2020, 14(1): 548–559. doi: 10.1109/JSYST.2019.2923819
    [30] CAO Kunrui, WANG Buhong, DING Haiyang, et al. Secure transmission designs for NOMA systems against internal and external eavesdropping[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2930–2943. doi: 10.1109/TIFS.2020.2980202
    [31] LI Xinrui, WANG Wei, ZHANG Miao, et al. Robust secure beamforming for SWIPT-aided relay systems with full-duplex receiver and imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1867–1878. doi: 10.1109/TVT.2019.2961449
    [32] CAO Kunrui, WANG Buhong, DING Haiyang, et al. Achieving reliable and secure communications in wireless-powered NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1978–1983. doi: 10.1109/TVT.2021.3053093
    [33] LI Yupeng, ZHANG Rongqing, ZHANG Jianhua, et al. Cooperative jamming via spectrum sharing for secure UAV communications[J]. IEEE Wireless Communications Letters, 2020, 9(3): 326–330. doi: 10.1109/LWC.2019.2953725
    [34] SUN Xiaoli, YANG Weiwei, CAI Yueming, et al. Secure MmWave UAV-enabled SWIPT networks based on random frequency diverse arrays[J]. IEEE Internet of Things Journal, 2021, 8(1): 528–540. doi: 10.1109/JIOT.2020.3005984
    [35] WANG Wei, TANG Jie, ZHAO Nan, et al. Joint precoding optimization for secure SWIPT in UAV-Aided NOMA networks[J]. IEEE Transactions on Communications, 2020, 68(8): 5028–5040. doi: 10.1109/TCOMM.2020.2990994
    [36] SUN Xiaoli, YANG Weiwei, and CAI Yueming. Secure communication in NOMA- assisted millimeter- wave SWIPT UAV networks[J]. IEEE Internet of Things Journal, 2020, 7(3): 1884–1897. doi: 10.1109/JIOT.2019.2957021
    [37] FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. IEEE Wireless Communications Letters, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969
    [38] GUO Xufeng, CHEN Yuanbin, and WANG Ying. Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1795–1799. doi: 10.1109/LWC.2021.3081464
    [39] GAO Ying, TANG Hongying, LI Baoqing, et al. Joint trajectory and power design for UAV-enabled secure communications with No-Fly zone constraints[J]. IEEE Access, 2019, 7: 44459–44470. doi: 10.1109/ACCESS.2019.2908407
    [40] XU Dongfang, SUN Yan, NG D W K, et al. Multiuser MISO UAV communications in uncertain environments with No-Fly Zones: Robust trajectory and resource allocation design[J]. IEEE Transactions on Communications, 2020, 68(5): 3153–3172. doi: 10.1109/TCOMM.2020.2970043
    [41] CAI Yunlong, CUI Fangyu, SHI Qingjiang, et al. Dual-UAV-enabled secure communications: Joint trajectory design and user scheduling[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1972–1985. doi: 10.1109/JSAC.2018.2864424
    [42] HUA Meng, WANG Yi, WU Qingqing, et al. Energy-efficient cooperative secure transmission in multi-UAV-enabled wireless networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7761–7775. doi: 10.1109/TVT.2019.2924180
    [43] GAO Ying, TANG Hongying, LI Baoqing, et al. Securing energy-constrained UAV communications against both internal and external eavesdropping[J]. IEEE Communications Letters, 2021, 25(3): 749–753. doi: 10.1109/LCOMM.2020.3036457
    [44] ZHOU Xiaobo, WU Qingqing, YAN Shihao, et al. UAV-enabled secure communications: Joint trajectory and transmit power optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4069–4073. doi: 10.1109/TVT.2019.2900157
    [45] WANG Huiming and ZHANG Xu. UAV secure downlink NOMA transmissions: A secure users oriented perspective[J]. IEEE Transactions on Communications, 2020, 68(9): 5732–5746. doi: 10.1109/TCOMM.2020.3002268
    [46] ZHAO Nan, LI Yanxin, ZHANG Shun, et al. Security enhancement for NOMA-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3994–4005. doi: 10.1109/TVT.2020.2972617
    [47] MAMAGHANI M T and HONG Yi. Improving PHY-security of UAV-enabled transmission with wireless energy harvesting: Robust trajectory design and communications resource allocation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8586–8600. doi: 10.1109/TVT.2020.2998060
    [48] CAI Yuanxin, WEI Zhiqiang, LI Ruide, et al. Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems[J]. IEEE Transactions on Communications, 2020, 68(7): 4536–4553. doi: 10.1109/TCOMM.2020.2982152
    [49] LI An and ZHANG Wenjing. Mobile jammer-aided secure UAV communications via trajectory design and power control[J]. China Communications, 2018, 15(8): 141–151. doi: 10.1109/CC.2018.8438280
    [50] LI Ruide, WEI Zhiqiang, YANG Lei, et al. Resource allocation for secure multi-UAV communication systems with multi-eavesdropper[J]. IEEE Transactions on Communications, 2020, 68(7): 4490–4506. doi: 10.1109/TCOMM.2020.2983040
    [51] MIAO Jiansong and ZHENG Ziyuan. Cooperative jamming for secure UAV-enabled mobile relay system[J]. IEEE Access, 2020, 8: 48943–48957. doi: 10.1109/ACCESS.2020.2980242
    [52] XIAO Lin, XU Yu, YANG Dingcheng, et al. Secrecy energy efficiency maximization for UAV-enabled mobile relaying[J]. IEEE Transactions on Green Communications and Networking, 2020, 4(1): 180–193. doi: 10.1109/TGCN.2019.2949802
    [53] SUN Xiaoli, YANG Weiwei, CAI Yueming, et al. Physical layer security in millimeter wave SWIPT UAV-based relay networks[J]. IEEE Access, 2019, 7: 35851–35862. doi: 10.1109/ACCESS.2019.2904856
    [54] XIAO Liang, LU Xiaozhen, XU Dongjin, et al. UAV relay in VANETs against smart jamming with reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4087–4097. doi: 10.1109/TVT.2018.2789466
    [55] TUAN V P, SANG N Q, and KONG H Y. Secrecy capacity maximization for untrusted UAV-assisted cooperative communications with wireless information and power transfer[J]. Wireless Networks, 2020, 26(4): 2999–3010. doi: 10.1007/s11276-020-02255-w
    [56] SUN Xiaoli, YANG Weiwei, CAI Yueming, et al. Secure transmissions in millimeter wave SWIPT UAV-based relay networks[J]. IEEE Wireless Communications Letters, 2019, 8(3): 785–788. doi: 10.1109/LWC.2019.2892771
    [57] BAO Tingnan, YANG Hongchuan, and HASNA M O. Secrecy performance analysis of UAV-assisted relaying communication systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1122–1126. doi: 10.1109/TVT.2019.2952525
    [58] YUAN Quansheng, HU Yongjiang, WANG Changlong, et al. Joint 3D beamforming and trajectory design for UAV-enabled mobile relaying system[J]. IEEE Access, 2019, 7: 26488–26496. doi: 10.1109/ACCESS.2019.2898995
    [59] DONG Runze, WANG Buhong, CAO Kunrui, et al. Securing transmission for UAV swarm-enabled communication network[J]. IEEE Systems Journal, To be published.
    [60] DONG Runze, WANG Buhong, and CAO Kunrui. Security enhancement of UAV swarm enabled relaying systems with joint beamforming and resource allocation[J]. China Communications, 2021, 18(9): 71–87. doi: 10.23919/JCC.2021.09.007
    [61] YAO Jianping and XU Jie. Joint 3D maneuver and power adaptation for secure UAV communication with CoMP reception[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6992–7006. doi: 10.1109/TWC.2020.3007648
    [62] WANG Xuanxuan, FENG Wei, CHEN Yunfei, et al. UAV swarm-enabled aerial CoMP: A physical layer security perspective[J]. IEEE Access, 2019, 7: 120901–120916. doi: 10.1109/ACCESS.2019.2936680
    [63] LIU Hongwu, YOO S J, and KWAK K S. Opportunistic relaying for low-altitude UAV swarm secure communications with multiple eavesdroppers[J]. Journal of Communications and Networks, 2018, 20(5): 496–508. doi: 10.1109/JCN.2018.000074
    [64] XU Yifan, REN Guochun, CHEN Jin, et al. A one-leader multi-follower bayesian-stackelberg game for anti-jamming transmission in UAV communication networks[J]. IEEE Access, 2018, 6: 21697–21709. doi: 10.1109/ACCESS.2018.2828033
    [65] WANG Wei, LI Xinrui, ZHANG Miao, et al. Energy-constrained UAV-assisted secure communications with position optimization and cooperative jamming[J]. IEEE Transactions on Communications, 2020, 68(7): 4476–4489. doi: 10.1109/TCOMM.2020.2989462
    [66] SUN Guen, LI Na, TAO Xiaofeng, et al. Power allocation in UAV-enabled relaying systems for secure communications[J]. IEEE Access, 2019, 7: 119009–119017. doi: 10.1109/ACCESS.2019.2932780
    [67] ZHOU Yifan, ZHOU Fuhui, ZHOU Huilin, et al. Robust trajectory and transmit power optimization for secure UAV-enabled cognitive radio networks[J]. IEEE Transactions on Communications, 2020, 68(7): 4022–4034. doi: 10.1109/TCOMM.2020.2979977
    [68] DONG Runze, WANG Buhong, and CAO Kunrui. Deep learning driven 3D robust beamforming for secure communication of UAV systems[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1643–1647. doi: 10.1109/LWC.2021.3075996
    [69] WU Huici, WEN Yang, ZHANG Jiazhen, et al. Energy-efficient and secure air-to-ground communication with jittering UAV[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3954–3967. doi: 10.1109/TVT.2020.2971520
    [70] ZHOU Yi, YEOH P L, CHEN He, et al. Improving physical layer security via a UAV friendly jammer for unknown eavesdropper location[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 11280–11284. doi: 10.1109/TVT.2018.2868944
    [71] SUN Yan, XU Dongfang, NG D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019, 67(6): 4281–4298. doi: 10.1109/TCOMM.2019.2900630
    [72] CHALLITA U, SAAD W, and BETTSTETTER C. Interference management for cellular-connected UAVs: A deep reinforcement learning approach[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2125–2140. doi: 10.1109/TWC.2019.2900035
    [73] 郝万明, 孙继威, 孙钢灿, 等. 基于非正交多址接入的移动边缘计算安全节能联合资源分配[J]. 电子与信息学报, 2021, 43(12): 3580–3587. doi: 10.11999/JEIT200872

    HAO Wanming, SUN Jiwei, SUN Gangcan, et al. Secure energy-efficient resource allocation in mobile edge computing based on non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3580–3587. doi: 10.11999/JEIT200872
    [74] ZHOU Yi, PAN Cunhua, YEOH P L, et al. Secure communications for UAV-enabled mobile edge computing systems[J]. IEEE Transactions on Communications, 2020, 68(1): 376–388. doi: 10.1109/TCOMM.2019.2947921
    [75] WANG Wen, TIAN Hui, and NI Wanli. Secrecy performance analysis of IRS-aided UAV relay system[J]. IEEE Wireless Communications Letters, 2021, 10(12): 2693–2697. doi: 10.1109/LWC.2021.3112752
    [76] WANG Qian, CHEN Zhi, MEI Weidong, et al. Improving physical layer security using UAV-enabled mobile relaying[J]. IEEE Wireless Communications Letters, 2017, 6(3): 310–313. doi: 10.1109/LWC.2017.2680449
    [77] YE Hao, LI G Y, and JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7(1): 114–117. doi: 10.1109/LWC.2017.2757490
    [78] ZENG Yong, XU Xiaoli, JIN Shi, et al. Simultaneous navigation and radio mapping for cellular-connected UAV with deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4205–4220. doi: 10.1109/TWC.2021.3056573
    [79] FENG Keming, WANG Qisheng, LI Xiao, et al. Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(5): 745–749. doi: 10.1109/LWC.2020.2969167
    [80] MISMAR F B, EVANS B L, and ALKHATEEB A. Deep reinforcement learning for 5G networks: Joint beamforming, power control, and interference coordination[J]. IEEE Transactions on Communications, 2020, 68(3): 1581–1592. doi: 10.1109/TCOMM.2019.2961332
    [81] ZHANG Shun, LI Muye, JIAN Mengnan, et al. AIRIS: Artificial intelligence enhanced signal processing in reconfigurable intelligent surface communications[J]. China Communications, 2021, 18(7): 158–171. doi: 10.23919/JCC.2021.07.013
    [82] ZHANG Yu, MOU Zhiyu, GAO Feifei, et al. UAV-enabled secure communications by multi-agent deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11599–11611. doi: 10.1109/TVT.2020.3014788
  • 加载中
图(4)
计量
  • 文章访问数:  2811
  • HTML全文浏览量:  1133
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-02-25
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-02-25
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回