Performance Analysis of Co-frequency and Co-time Full Duplex Frequency Hopping Ad Hoc Networks in Finite Area
-
摘要: 该文针对有限区域的同时同频全双工(CCFD)跳频自组网络,通信节点位置不等价,受非对称互干扰和自干扰影响的场景,开展有限区域全双工跳频自组网的通信性能分析。以网络频带利用率为性能指标,推导出节点位置分布条件下的网络频带利用率闭合表达式,并提出一种降低网络互干扰的节点位置优化分布方法。理论和仿真结果表明,有限区域全双工跳频自组网的性能与频点个数、通信距离、节点个数强相关,且全双工自组网络的性能与半双工网络相比,其占优区域受节点个数约束。Abstract: For Co-frequency and Co-time Full Duplex (CCFD) frequency hopping ad hoc network in finite area, communication performance analysis is proposed considering the scenario of self-interference and asymmetric mutual interference caused by unequal position of communication nodes. Taking the network band utilization as the performance index, the closed expression of network band utilization under the condition of node location distribution is derived, and a node location optimization distribution method reducing network mutual interference is proposed. Simulation results show that the performance of full duplex frequency hopping ad hoc network in finite area is strongly related to the number of frequency points, communication distance and the number of nodes. Besides, whether the performance of full duplex ad hoc network is better than half duplex network depends on the number of nodes.
-
算法1 PECC节点分布方法 确定节点对个数$N = K + 1$; (1) 根据$N$,确定PECC问题中各圆饼的圆心坐标,依次记为
${n_k},k = 0,1,\cdots,K$;(2) 对于每一个${n_k}$,以${n_k}$为圆心,作半径为$r/2$的圆,节点${a_k}$等
概落在圆周上;(3) 确定节点${b_k}$位置,其与${a_k}$关于${n_k}$中心对称。 表 1 仿真参数设置
参数 数值 路径损耗指数$\alpha $ 2.5 网络半径$R$ 1 节点间通信距离$r$ 0.08 参考距离${d_0}$ 10–4 参考距离处的功率${P_t}$ 7.82 dBm 区域内节点总数$2(K + 1)$ 50 频点个数$F$ 5 频道内功率占比$\beta $ 0.98 接收机解调门限$\varGamma$ 4 dB 全双工信干噪比参数${\varLambda ^{ - 1} }$ 12.1 dB 半双工信噪比参数$\varLambda _0^{ - 1}$ 16.8 dB -
[1] ARAFAT M Y, POUDEL S, and MOH S. Medium access control protocols for flying ad hoc networks: A review[J]. IEEE Sensors Journal, 2021, 21(4): 4097–4121. doi: 10.1109/JSEN.2020.3034600 [2] TAMBAWAL A B, NOOR R M, SALLEH R, et al. Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: A survey[J]. Telecommunication Systems, 2019, 70(4): 595–616. doi: 10.1007/s11235-018-00542-8 [3] JAHIR Y, ATIQUZZAMAN M, REFAI H, et al. Routing protocols and architecture for disaster area network: A survey[J]. Ad Hoc Networks, 2019, 82: 1–14. doi: 10.1016/j.adhoc.2018.08.005 [4] ZHOU Zejian, QIAN Lijun, and XU Hao. Intelligent decentralized dynamic power allocation in MANET at tactical edge based on mean-field game theory[C]. MILCOM 2019 - 2019 IEEE Military Communications Conference, Norfolk, USA, 2019: 604–609. [5] SABHARWAL A, SCHNITER P, GUO Dongning, et al. In-band full-duplex wireless: Challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637–1652. doi: 10.1109/JSAC.2014.2330193 [6] AYAR H and GURBUZ O. Cyclic prefix noise reduction for digital self interference cancellation in OFDM-based in-band full-duplex wireless systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 6224–6238. doi: 10.1109/TWC.2021.3072909 [7] XIE Xiufeng and ZHANG Xinyu. Does full-duplex double the capacity of wireless networks?[C]. IEEE Conference on Computer Communications, Toronto, Canada, 2014: 253–261. [8] KIM D, PARK S, JU H, et al. Transmission capacity of full-duplex-based two-way ad hoc networks with ARQ protocol[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3167–3183. doi: 10.1109/TVT.2014.2302013 [9] THORNBURG A, BAI Tianyang, and HEATH R W. Performance analysis of outdoor mmWave ad hoc networks[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4065–4079. doi: 10.1109/TSP.2016.2551690 [10] QIN Dongrun and DING Zhi. Transport capacity analysis of wireless in-band full duplex ad hoc networks[J]. IEEE Transactions on Communications, 2017, 65(3): 1303–1318. doi: 10.1109/TCOMM.2016.2640278 [11] LI Shaosheng, NIE Hongrui, and WU Huici. Performance analysis of frequency hopping ad hoc communication system with non-orthogonal multiple access[J]. IEEE Access, 2019, 7: 113171–113181. doi: 10.1109/ACCESS.2019.2935024 [12] WEBER S, ANDREWS J G, and JINDAL N. An overview of the transmission capacity of wireless networks[J]. IEEE Transactions on Communications, 2010, 58(12): 3593–3604. doi: 10.1109/TCOMM.2010.093010.090478 [13] ANDREWS J G, WEBER S, KOUNTOURIS M, et al. Random access transport capacity[J]. IEEE Transactions on Wireless Communications, 2010, 9(6): 2101–2111. doi: 10.1109/TWC.2010.06.091432 [14] HAENGGI M and GANTI R K. Interference in large wireless networks[J]. Foundations and Trends® in Networking, 2009, 3(2): 127–248. doi: 10.1561/1300000015 [15] JIANG Yufei, DUAN Hanjun, ZHU Xu, et al. Toward URLLC: A full duplex relay system with self-interference utilization or cancellation[J]. IEEE Wireless Communications, 2021, 28(1): 74–81. doi: 10.1109/MWC.001.2000238 [16] TORRIERI D and VALENTI M C. The outage probability of a finite ad hoc network in nakagami fading[J]. IEEE Transactions on Communications, 2012, 60(11): 3509–3518. doi: 10.1109/TCOMM.2012.081512.110530 [17] ROY R R. Handbook of Mobile Ad Hoc Networks for Mobility Models[M]. Boston: Springer, 2011: 65–75. [18] HUANG Wenqi and YE Tao. Global optimization method for finding dense packings of equal circles in a circle[J]. European Journal of Operational Research, 2011, 210(3): 474–481. doi: 10.1016/j.ejor.2010.11.020 [19] SPECHT E. Packomania website[OL]. www.packomania.com, 2021.