Progress in Near-field Source Localization via Uniform Circular Array
-
摘要: 近场源定位在雷达、声呐和通信中发挥着重要的作用。该文利用均匀圆阵的阵列结构优势,系统梳理了窄带近场源定位方法以及解模糊方法,并在此基础上从时域、频域、分数阶傅里叶域等方面阐述了近场线性调频(LFM)信号的方位角、俯仰角和距离等3维位置参数快速精确估计方法。最后,对相干辐射源和近远场混合源参数估计等后续研究内容进行了展望。Abstract: Near-field source localization plays an important role in the radar, sonar and communications. The near-field source localization methods and the resolving ambiguity methods via uniform circular array are systematically introduced in this paper. On this basis, the fast and accurate algorithms for three-dimensional position parameter (azimuth angle, elevation angle and range) estimation of near-field Linear Frequency Modulated (LFM) signal are further introduced from time domain, frequency domain, and fractional Fourier domain. Finally, the following research ideas are proposed from the aspects of coherent source and mixed source localization.
-
表 1 单次运行平均时间对比(s)
基于均匀圆阵的近场LFM信号定位算法 时间 基于聚焦变换的算法 2.98e-02 基于分数阶傅里叶变换的算法 2.74 基于时延的算法 2.02e-02 ISSM-3DMUSIC算法 29.38 -
[1] 王琦森, 余华, 李杰, 等. 基于稀疏贝叶斯学习的空间紧邻信号DOA估计算法[J]. 电子与信息学报, 2021, 43(3): 708–716. doi: 10.11999/JEIT200656WANG Qisen, YU Hua, LI Jie, et al. Sparse Bayesian learning based algorithm for DOA estimation of closely spaced signals[J]. Journal of Electronics &Information Technology, 2021, 43(3): 708–716. doi: 10.11999/JEIT200656 [2] TIAN Tuanwei, DU Xiaolin, and LI Guchong. Cramer-Rao bounds of localization estimation for integrated radar and communication system[J]. IEEE Access, 2020, 8: 105852–105863. doi: 10.1109/ACCESS.2020.3000671 [3] 周天, 沈嘉俊, 杜伟东, 等. 基于Khatri-Rao积的三维前视声呐空间方位估计技术[J]. 电子与信息学报, 2021, 43(3): 857–864. doi: 10.11999/JEIT200657ZHOU Tian, SHEN Jiajun, DU Weidong, et al. DOA estimation technology based on Khatri-Rao product for 3D forward-looking sonar[J]. Journal of Electronics &Information Technology, 2021, 43(3): 857–864. doi: 10.11999/JEIT200657 [4] 黄俊生, 苏洪涛. 二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法[J]. 电子与信息学报, 2020, 42(7): 1557–1565.HUANG Junsheng and SU Hongtao. Joint transmitting subarray partition and beamforming design method based on two-dimensional phased-MIMO radar[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1557–1565. [5] 王洪雁, 于若男, 潘勉, 等. 基于协方差矩阵重构的离网格DOA估计方法[J]. 电子与信息学报, 2021, 43(10): 2863–2870. doi: 10.11999/JEIT200697WANG Hongyan, YU Ruonan, PAN Mian, et al. Off-grid DOA estimation method based on covariance matrix reconstruction[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2863–2870. doi: 10.11999/JEIT200697 [6] ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Fast sparse aperture ISAR autofocusing and imaging via ADMM based sparse Bayesian learning[J]. IEEE Transactions on Image Processing, 2020, 29: 3213–3226. doi: 10.1109/TIP.2019.2957939 [7] 靳一, 徐常志, 荆涛, 等. 基于离格稀疏表示的近场信源定位方法[J]. 电子与信息学报, 2021, 43(11): 3105–3110. doi: 10.11999/JEIT200784JIN Yi, XU Changzhi, JING Tao, et al. Off-grid sparse representation based localization method for near-field sources[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3105–3110. doi: 10.11999/JEIT200784 [8] CAO Yashuai, LV Tiejun, LIN Zhipeng, et al. Complex ResNet aided DoA estimation for near-field MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11139–11151. doi: 10.1109/TVT.2020.3007894 [9] YADAV S K and GEORGE N V. Underdetermined direction-of-arrival estimation using sparse circular arrays on a rotating platform[J]. IEEE Signal Processing Letters, 2021, 28: 862–866. doi: 10.1109/LSP.2021.3068713 [10] XU Kaijie, QUAN Yinghui, BIE Bowen, et al. Fast direction of arrival estimation for uniform circular arrays with a virtual signal subspace[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1731–1741. doi: 10.1109/TAES.2021.3050667 [11] JIANG Guojun, MAO Xingpeng, and LIU Yongtan. Underdetermined DOA estimation via covariance matrix completion for nested sparse circular array in nonuniform noise[J]. IEEE Signal Processing Letters, 2020, 27: 1824–1828. doi: 10.1109/LSP.2020.3028502 [12] HU Die, ZHANG Yonghao, HE Lianghua, et al. Low-complexity deep-learning-based DOA estimation for hybrid massive MIMO systems with uniform circular arrays[J]. IEEE Wireless Communications Letters, 2020, 9(1): 83–86. doi: 10.1109/LWC.2019.2942595 [13] 张进锋. 宽带信号阵列测向技术及应用研究[D]. [硕士论文], 战略支援部队信息工程大学, 2021.ZHANG Jinfeng. Research on wideband signal array direction finding technology and application[D]. [Master dissertation], PLA Strategic Support Force Information Engineering University, 2021. [14] 唐才溢. 宽带信号离网格DOA估计方法研究[D]. [硕士论文], 电子科技大学, 2021.TANG Caiyi. Research on wideband signal off-grid DOA estimation methods[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021. [15] LIANG Yibao, CUI Wei, SHEN Qing, et al. Cramér-Rao bound analysis of underdetermined wideband DOA estimation under the subband model via frequency decomposition[J]. IEEE Transactions on Signal Processing, 2021, 69: 4132–4148. doi: 10.1109/TSP.2021.3088231 [16] 李润宇. 基于空域稀疏性的宽带声源DOA估计算法研究[D]. [硕士论文], 西安电子科技大学, 2020.LI Runyu. Research on DOA estimation algorithm of wideband sound source based on spatial sparsity[D]. [Master dissertation], Xidian University, 2020. [17] WANG Feiyu, TIAN Zhi, LEUS G, et al. Direction of arrival estimation of wideband sources using sparse linear arrays[J]. IEEE Transactions on Signal Processing, 2021, 69: 4444–4457. doi: 10.1109/TSP.2021.3094718 [18] HU Nan, WANG Tianyun, WEI Qiang, et al. Underdetermined wideband DOA estimation utilizing noncircular complex Gaussian distribution[J]. IEEE Sensors Letters, 2020, 4(5): 7001604. doi: 10.1109/LSENS.2020.2988452 [19] 赵杨, 尚朝轩, 韩壮志, 等. 分数阶傅里叶和压缩感知自适应抗频谱弥散干扰[J]. 电子与信息学报, 2019, 41(5): 1047–1054. doi: 10.11999/JEIT180569ZHAO Yang, SHANG Chaoxuan, HAN Zhuangzhi, et al. Fractional Fourier transform and compressed sensing adaptive countering smeared spectrum jamming[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1047–1054. doi: 10.11999/JEIT180569 [20] JUNG D H, KIM D H, AZIM M T, et al. A novel signal processing technique for Ku-band automobile FMCW fully polarimetric SAR system using triangular LFM[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8500210. doi: 10.1109/TIM.2020.3011601 [21] 金艳, 陈鹏辉, 姬红兵. 脉冲噪声下基于压缩变换函数的LFM信号参数估计[J]. 电子与信息学报, 2021, 43(2): 277–283. doi: 10.11999/JEIT200342JIN Yan, CHEN Penghui, and JI Hongbing. Parameter estimation of LFM signals based on compress transform function in impulsive noise[J]. Journal of Electronics &Information Technology, 2021, 43(2): 277–283. doi: 10.11999/JEIT200342 [22] CHEN Shihong and PAN Minghai. Analytical model and real-time calculation of target echo signals on wideband LFM radar[J]. IEEE Sensors Journal, 2021, 21(9): 10726–10734. doi: 10.1109/JSEN.2021.3063737 [23] ZHANG Yixiong, CHEN Xiufang, XU Huawei, et al. Fast acceleration and velocity estimation for wideband stretching LFM radars based on mutual bias correction[J]. IEEE Sensors Journal, 2020, 20(15): 8683–8697. doi: 10.1109/JSEN.2020.2983839 [24] 李昊. 微波光子雷达中线性调频信号产生技术研究[D]. [硕士论文], 内蒙古大学, 2021.LI Hao. Research on the generation technology of linearly frequency modulation signal in microwave photonic radar[D]. [Master dissertation], Inner Mongolia University, 2021. [25] YAO Shuai, YU Wenhui, FANG Shiliang, et al. Robust active sonar detection in frequency and time dispersive channels using matching envelope spectrum of multi-pulse LFM signals[J]. IEEE Access, 2020, 8: 159990–160003. doi: 10.1109/ACCESS.2020.3020624 [26] LIU Xionghou, FAN Jiahao, SUN Chao, et al. Deconvolving range profile for sonar imaging using stepped-frequency LFM pulses[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 954–958. doi: 10.1109/LGRS.2020.2991418 [27] CHEN Zhenhua, YI Wei, BLUM R S, et al. Passive localization for emitter with unknown LFM signal based on signal parameter estimation[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. [28] DING Yongfei, SUN Le, ZHANG Hengyang, et al. A multi-component LFM signal parameters estimation method using STFT and Zoom-FRFT[C]. 2016 8th IEEE International Conference on Communication Software and Networks, Beijing, China, 2016: 112–117. [29] 李家强, 金荣洪, 耿军平, 等. 基于高斯短时分数阶傅里叶变换的多分量LFM信号检测与参数估计[J]. 电子与信息学报, 2007, 29(3): 570–573. doi: 10.3724/SP.J.1146.2005.00857LI Jiaqiang, JIN Ronghong, GENG Junping, et al. Detection and estimation of multi-component LFM signals based on Gauss short-time fractional Fourier transform[J]. Journal of Electronics &Information Technology, 2007, 29(3): 570–573. doi: 10.3724/SP.J.1146.2005.00857 [30] 王硕. 基于FRFT的线性调频信号处理方法研究[D]. [硕士论文], 内蒙古科技大学, 2020.WANG Shuo. Research on LFM signal processing based on FRFT[D]. [Master dissertation], Inner Mongolia University of Science & Technology, 2020. [31] YANG Zeze, LI Yubai, MAO Lei, et al. Wideband LFM interference suppression of GNSS receiver based on fractional Fourier transform and power inversion[C]. 2021 International Symposium on Computer Technology and Information Science, Guilin, China, 2021: 376–381. [32] CUI Yue, WANG Junfeng, SUN Haixin, et al. Gridless underdetermined DOA estimation of wideband LFM signals with unknown amplitude distortion based on fractional Fourier transform[J]. IEEE Internet of Things Journal, 2020, 7(12): 11612–11625. doi: 10.1109/JIOT.2020.2999812 [33] WU Zhao, PEI Shiqi, and CHEN Weidong. DOA estimation of wideband LFM signals based on zoom-FRFT[C]. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications, Dalian, China, 2020: 201–205. [34] ULRYCH T J and BISHOP T N. Maximum entropy spectral analysis and autoregressive decomposition[J]. Reviews of Geophysics, 1975, 13(1): 183–200. doi: 10.1029/RG013i001p00183 [35] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278 [36] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830 [37] RAO B D and HARI K V S. Performance analysis of Root-Music[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939–1949. doi: 10.1109/29.45540 [38] KUMARESAN R and TUFTS D W. Estimating the angles of arrival of multiple plane waves[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(1): 134–139. doi: 10.1109/TAES.1983.309427 [39] ROY R, PAULRAJ A, and KAILATH T. ESPRIT-a subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1340–1342. doi: 10.1109/TASSP.1986.1164935 [40] RAO B D and HARI K V S. Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1990–1995. doi: 10.1109/29.45548 [41] CADZOW J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(7): 965–979. doi: 10.1109/29.1618 [42] KRIM H and VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67–94. doi: 10.1109/79.526899 [43] STOICA P and SHARMAN K C. Novel eigenanalysis method for direction estimation[J]. IEE Proceedings F (Radar and Signal Processing) , 1990, 137(1): 19–26. doi: 10.1049/ip-f-2.1990.0004 [44] VIBERG M, OTTERSTEN B, and KAILATH T. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Transactions on Signal Processing, 1991, 39(11): 2436–2449. doi: 10.1109/78.97999 [45] HUANG Y D and BARKAT M. Near-field multiple source localization by passive sensor array[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(7): 968–975. doi: 10.1109/8.86917 [46] WEISS A J and FRIEDLANDER B. Range and bearing estimation using polynomial rooting[J]. IEEE Journal of Oceanic Engineering, 1993, 18(2): 130–137. doi: 10.1109/48.219532 [47] KABAOGLU N, CIRPAN H A, CEKLI E, et al. Maximum likelihood 3-D near-field source localization using the EM algorithm[C]. The Eighth IEEE Symposium on Computers and Communications, Kemer-Antalya, Turkey, 2003: 492–497. [48] LEE J H, LEE C M, and LEE K K. A modified path-following algorithm using a known algebraic path[J]. IEEE Transactions on Signal Processing, 1999, 47(5): 1407–1409. doi: 10.1109/78.757232 [49] ABED-MERAIM K, HUA Yingbo, and BELOUCHRANI A. Second-order near-field source localization: Algorithm and performance analysis[C]. Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1996: 723–727. [50] YUEN N and FRIEDLANDER B. Performance analysis of higher order ESPRIT for localization of near-field sources[J]. IEEE Transactions on Signal Processing, 1998, 46(3): 709–719. doi: 10.1109/78.661337 [51] CHALLA R N and SHAMSUNDER S. Passive near-field localization of multiple non-Gaussian sources in 3-D using cumulants[J]. Signal Processing, 1998, 65(1): 39–53. doi: 10.1016/S0165-1684(97)00206-5 [52] OBEIDAT B A, ZHANG Yimin, and AMIN M G. Range and DOA estimation of polarized near-field signals using fourth-order statistics[C]. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, 2004: 97–100. [53] HUNG H S, CHANG S H, and WU C H. 3-D MUSIC with polynomial rooting for near-field source localization[C]. 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, USA, 1996: 3065–3068. [54] GOOSSENS R, ROGIER H, and WERBROUCK S. UCA Root-MUSIC with sparse uniform circular arrays[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 4095–4099. doi: 10.1109/TSP.2008.925905 [55] 陈建, 王树勋. 基于高阶累积量虚拟阵列扩展的DOA估计[J]. 电子与信息学报, 2007, 29(5): 1041–1044. doi: 10.3724/SP.J.1146.2005.01014CHEN Jian and WANG Shuxun. DOA estimation of virtual array extension based on Fourth-Order cumulant[J]. Journal of Electronics &Information Technology, 2007, 29(5): 1041–1044. doi: 10.3724/SP.J.1146.2005.01014 [56] HUANG Jiacai, SHI Yaowu, and TAO Jianwu. Joint estimation of DOA, frequency, and polarization based on cumulants and UCA[J]. Journal of Systems Engineering and Electronics, 2007, 18(4): 704–709. doi: 10.1016/S1004-4132(08)60007-9 [57] REDDY K M and REDDY V U. Analysis of spatial smoothing with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1999, 47(6): 1726–1730. doi: 10.1109/78.765150 [58] PAN Jie and ZHOU Jianjing. Beamspace PM-Root-MUSIC for uniform circular array based on MST[C]. 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 2009: 899–901. [59] LIAO Bin, WU Yuntao, and CHAN S C. A generalized algorithm for fast two-dimensional angle estimation of a single source with uniform circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 984–986. doi: 10.1109/LAWP.2012.2213792 [60] WU Yuntao, WANG Hai, ZHANG Yanbin, et al. Multiple near-field source localisation with uniform circular array[J]. Electronics Letters, 2013, 49(24): 1509–1510. doi: 10.1049/el.2013.2012 [61] LEE J H, PARK D H, PARK G T, et al. Algebraic path-following algorithm for localising 3-D near-field sources in uniform circular array[J]. Electronics Letters, 2003, 39(17): 1283–1285. doi: 10.1049/el:20030819 [62] HAYASHI T, KIKUMA N, SAKAKIBARA K, et al. Localization of near-field sources using uniform circular array and blind calibration method[C]. 2020 International Symposium on Antennas and Propagation, Osaka, Japan, 2021: 677–678. [63] 吴云韬, 张彦斌, 曹辉, 等. 均匀圆阵下单个近场源信号四维参数估计快速算法[J]. 武汉工程大学学报, 2013, 35(3): 75–78. doi: 10.3969/j.issn.1674-2869.2013.03.016WU Yuntao, ZHANG Yanbin, CAO Hui, et al. Fast algorithm for four-dimensional parameter estimation of single near-field source with uniform circular array[J]. Journal of Wuhan Institute of Technology, 2013, 35(3): 75–78. doi: 10.3969/j.issn.1674-2869.2013.03.016 [64] 梁军利, 冀邦杰, 赵峰, 等. 一种基于高阶累积量的近场源四维参数联合估计算法[J]. 电子学报, 2007, 35(9): 1734–1738. doi: 10.3321/j.issn:0372-2112.2007.09.024LIANG Junli, JI Bangjie, ZHAO Feng, et al. Four-dimensional parameter estimation of near-field source using higher-order cumulant[J]. Acta Electronica Sinica, 2007, 35(9): 1734–1738. doi: 10.3321/j.issn:0372-2112.2007.09.024 [65] 胡增辉, 朱炬波, 何峰, 等. 基于均匀圆阵的近场源三维参数估计[J]. 电波科学学报, 2011, 26(5): 967–972. doi: 10.13443/j.cjors.2011.05.027HU Zenghui, ZHU Jubo, HE Feng, et al. 3-D parameter estimation of near-field sources using uniform circular array[J]. Chinese Journal of Radio Science, 2011, 26(5): 967–972. doi: 10.13443/j.cjors.2011.05.027 [66] MATHEWS C P and ZOLTOWSKI M D. Performance analysis of the UCA-ESPRIT algorithm for circular ring arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2535–2539. doi: 10.1109/78.317881 [67] CHEN Xin, LIU Zhen, LIU Tianpeng, et al. Phase-based 3-D source localization using 1-b quantized measurements under uniform circular array[J]. IEEE Sensors Letters, 2020, 4(3): 7000704. doi: 10.1109/LSENS.2020.2973277 [68] BAE E H and LEE K K. Closed-form 3-D localization for single source in uniform circular array with a center sensor[J]. IEICE Transactions on Communications, 2009, E92-B(3): 1053–1056. doi: 10.1587/transcom.E92.B.1053 [69] WU Yuntao, WANG Hai, HUANG Longting, et al. Fast algorithm for three-dimensional single near-field source localization with uniform circular array[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 350–352. [70] JUNG T and LEE K. Closed-form algorithm for 3-D single-source localization with uniform circular array[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1096–1099. doi: 10.1109/LAWP.2014.2327992 [71] LIU Zhen, CHEN Xin, WEI Zhenhua, et al. Ambiguity analysis and resolution for phase-based 3D source localization under given UCA[J]. International Journal of Antennas and Propagation, 2019, 2019: 4743829. doi: 10.1155/2019/4743829 [72] MA Ziwei, HE Di, CHEN Xin, et al. Localization of 3-D near-field sources based on the joint phase interferometer and MUSIC algorithm[C]. 2020 IEEE Globecom Workshops, Taipei, China, 2020: 1–6. [73] TAN K C, GOH S S, and TAN E C. A study of the rank-ambiguity issues in direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 880–887. doi: 10.1109/78.492541 [74] TAN C M, FOO S E, BEACH M A, et al. Ambiguity in music and esprit for direction of arrival estimation[J]. Electronics Letters, 2002, 38(24): 1598–1600. doi: 10.1049/el:20021036 [75] 辛金龙, 廖桂生, 杨志伟, 等. 基于旋转干涉仪圆阵化的多目标参数估计新算法[J]. 电子与信息学报, 2018, 40(2): 486–492. doi: 10.11999/JEIT170217XIN Jinlong, LIAO Guisheng, YANG Zhiwei, et al. Multiple source parameter estimation for rotating interferometer using circular array processing[J]. Journal of Electronics &Information Technology, 2018, 40(2): 486–492. doi: 10.11999/JEIT170217 [76] SUNDARAM K R, MALLIK R K, and MURTHY U M S. Modulo conversion method for estimating the direction of arrival[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1391–1396. doi: 10.1109/7.892687 [77] ZHENG Jian, LIU Zhuanghua, JIANG Qinbo, et al. Algorithm for passive localization with single observer based on ambiguous phase differences measured by rotating interferometer[C]. IEEE 11th International Conference on Electronic Measurement & Instruments, Harbin, China, 2013: 655–659. [78] 王伟, 马跃华, 李欣. 基于相位差的均匀圆阵DOA估计新方法[J]. 系统工程与电子技术, 2012, 34(10): 1994–1998. doi: 10.3969/j.issn.1001-506X.2012.10.04WANG Wei, MA Yuehua, and LI Xin. New method of DOA estimation for UCA based on phase differences[J]. Systems Engineering and Electronics, 2012, 34(10): 1994–1998. doi: 10.3969/j.issn.1001-506X.2012.10.04 [79] 潘玉剑, 张晓发, 黄敬健, 等. 模拟鉴相圆阵干涉仪测向性能的提高及其验证[J]. 系统工程与电子技术, 2015, 37(6): 1237–1241. doi: 10.3969/j.issn.1001-506X.2015.06.02PAN Yujian, ZHANG Xiaofa, HUANG Jingjian, et al. Direction finding performance improvement of circular array interferometer with analog phase detector and its verification[J]. Systems Engineering and Electronics, 2015, 37(6): 1237–1241. doi: 10.3969/j.issn.1001-506X.2015.06.02 [80] CHEN Xin, LIU Zhen, and WEI Xizhang. Unambiguous parameter estimation of multiple near-field sources via rotating uniform circular array[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 872–875. doi: 10.1109/LAWP.2016.2613084 [81] LIN Mingtuan, LIU Peiguo, and LIU Jibin. Rotary way to resolve ambiguity for planar array[C]. 2014 IEEE International Conference on Signal Processing, Communications and Computing, Guilin, China, 2014: 170–174. [82] CHEN Xin, ZHANG Xuefeng, LIU Zhen, et al. Ambiguity resolving in parameter estimation of a single near-field source with uniform circular array via clustering[C]. SPIE 10033, Eighth International Conference on Digital Image Processing, Chengdu, China, 2016: 1003361. [83] BUCRIS Y, COHEN I, and DORON M A. Bayesian focusing for coherent wideband beamforming[J]. IEEE Transactions on Audio Speech and Language Processing, 2012, 20(4): 1282–1296. doi: 10.1109/TASL.2011.2175384 [84] CHEN J C, HUDSON R E, and YAO K. Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1843–1854. doi: 10.1109/TSP.2002.800420 [85] AGRAWAL M and PRASAD S. A modified likelihood function approach to DOA estimation in the presence of unknown spatially correlated Gaussian noise using a uniform linear array[J]. IEEE Transactions on Signal Processing, 2000, 48(10): 2743–2749. doi: 10.1109/78.869024 [86] CADALLI N and ARIKAN O. Wideband maximum likelihood direction finding and signal parameter estimation by using the tree-structured EM algorithm[J]. IEEE Transactions on Signal Processing, 1999, 47(1): 201–206. doi: 10.1109/78.738252 [87] JIN Yong, HOU Yandong, and SHI Wentao. Fast DOA estimation for widebandsources based on perfect sampling[C]. 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, China, 2009: 1336–1339. [88] ALLAM M and MOGHADDAMJOO A. Two-dimensional DFT projection for wideband direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1995, 43(7): 1728–1732. doi: 10.1109/78.398738 [89] WAX M, SHAN Tiejun, and KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 817–827. doi: 10.1109/TASSP.1984.1164400 [90] YOON Y S, KAPLAN L M, and MCCLELLAN J H. TOPS: New DOA estimator for wideband signals[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 1977–1989. doi: 10.1109/TSP.2006.872581 [91] DI CLAUDIO E D and PARISI R. WAVES: Weighted average of signal subspaces for robust wideband direction finding[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2179–2191. doi: 10.1109/78.950774 [92] LEE T S. Efficient wideband source localization using beamforming invariance technique[J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1376–1387. doi: 10.1109/78.286954 [93] 于红旗, 黄知涛, 刘剑, 等. TOFS: 一种新的宽带源DOA估计算法[J]. 宇航学报, 2007, 28(5): 1304–1308,1313. doi: 10.3321/j.issn:1000-1328.2007.05.044YU Hongqi, HUANG Zhitao, LIU Jian, et al. TOFS: A new DOA estimator for wideband sources[J]. Journal of Astronautics, 2007, 28(5): 1304–1308,1313. doi: 10.3321/j.issn:1000-1328.2007.05.044 [94] WANG H and KAVEH M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 823–831. doi: 10.1109/TASSP.1985.1164667 [95] HUNG H and KAVEH M. Focussing matrices for coherent signal-subspace processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(8): 1272–1281. doi: 10.1109/29.1655 [96] DORAN M A, DORON E, and WEISS A J. Coherent wide-band processing for arbitrary array geometry[J]. IEEE Transactions on Signal Processing, 1993, 41(1): 414–417. doi: 10.1109/TSP.1993.193167 [97] VALAEE S and KABAL P. Wideband array processing using a two-sided correlation transformation[J]. IEEE Transactions on Signal Processing, 1995, 43(1): 160–172. doi: 10.1109/78.365295 [98] HU Panhe, CHEN Xin, SU Xiaolong, et al. One-bit quantified phase-based algorithm for three-dimensional localization of wideband near-field source via uniform circular array[J]. Journal of Applied Remote Sensing, 2022, 16(2): 024521. doi: 10.1117/1.JRS.16.024521 [99] CHEN Xin, LIU Zhen, and WEI Xizhang. Fast FRFT-based algorithm for 3-D LFM source localization with uniform circular array[J]. IEEE Access, 2018, 6: 2130–2135. doi: 10.1109/access.2017.2781798 [100] CHEN Xin, LIU Zhen, LIU Tianpeng, et al. Fast algorithm for 3D wideband LFM source localisation based on time delay under a uniform circular array[J]. IET Radar, Sonar & Navigation, 2019, 13(12): 2212–2219. doi: 10.1049/iet-rsn.2019.0164 [101] WU Xiaohuan. Localization of far-field and near-field signals with mixed sparse approach: A generalized symmetric arrays perspective[J]. Signal Processing, 2020, 175: 107665. doi: 10.1016/j.sigpro.2020.107665 [102] ZHENG Zhi, FU Mingcheng, WANG Wenqin, et al. Symmetric displaced coprime array configurations for mixed near- and far-field source localization[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 465–477. doi: 10.1109/TAP.2020.3005203 [103] HE Jin, LI Linna, SHU Ting, et al. Mixed near-field and far-field source localization based on exact spatial propagation geometry[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3540–3551. doi: 10.1109/TVT.2021.3065954 [104] SU Xiaolong, LIU Zhen, LIU Tianpeng, et al. Passive localization of mixed near-field and far-field sources without eigendecomposition via uniform circular array[J]. Circuits, Systems, and Signal Processing, 2020, 39(10): 5298–5317. doi: 10.1007/s00034-020-01413-x [105] HUANG Zhikai, WANG Wei, DONG Fuwang, et al. A one-snapshot localization algorithm for mixed far-field and near-field sources[J]. IEEE Communications Letters, 2020, 24(5): 1010–1014. doi: 10.1109/LCOMM.2020.2977002 [106] SU Xiaolong, HU Panhe, GONG Zhenghui, et al. Convolution neural networks for localization of near-field sources via symmetric double-nested array[J]. Wireless Communications and Mobile Computing, 2021, 2021: 9996780. doi: 10.1155/2021/9996780 [107] SU Xiaolong, HU Panhe, LIU Zhen, et al. Mixed near-field and far-field source localization based on convolution neural networks via symmetric nested array[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7908–7920. doi: 10.1109/TVT.2021.3095194