Side Channel Analysis Optimization Method Based on Data Preprocessing
-
摘要: 电磁侧信道信息具有数据庞杂无序,信噪比低的特征,对侧信道分析的结果存在较大影响。针对电磁侧信道数据的特性,该文提出一种最小相关差值的对齐方法,通过参考信号的自相关函数与待对齐信号的互相关函数之间的相似度来估计延时差值。同时,提出一种K奇异值分解(KSVD)字典学习的降噪方法,交替迭代进行稀疏编码和字典更新来滤除高频噪声。为了验证数据预处理方法对侧信道分析结果的优化效果,设计并搭建了电磁侧信道测评系统,并基于实际芯片进行了近场电磁侧信道信息采集与分析。该文使用所提预处理方法对电磁数据进行对齐与降噪,通过t-test泄露评估与相关性电磁分析,对比最大相关系数对齐与小波降噪方法,能够将侧信道攻击的效率分别提高29.91%和55.23%。Abstract: The electromagnetic side channel information has the characteristics of complexity, disorder and low signal-to-noise ratio, which has a great impact on the results of side channel analysis. Based on the characteristics of electromagnetic data, in this paper, an alignment method using maximum correlation difference is proposed, which estimates the delay based on the similarity between the autocorrelation function of the reference signal and the cross-correlation function of the signal to be aligned. At the same time, a noise reduction method of K Singular Value Decomposition(KSVD) dictionary learning is proposed, which performs alternately sparse coding and dictionary update to filter out high-frequency noise. In order to verify the optimization effect of the data preprocessing method on the side channel analysis results, an electromagnetic side channel evaluation system is designed and built, and the near-field electromagnetic side channel information collection and analysis are carried out based on the actual chip. The proposed preprocessing method is used in this paper to align and reduce noise of electromagnetic data, and through t-test leakage assessment and correlation electromagnetic analysis, the maximum correlation coefficient alignment and wavelet noise reduction methods are compared, which can improve the efficiency of side-channel attacks 29.91% and 55.23%.
-
表 1 不同对齐方法的MTD值
对齐方法 A点(x=800 μm, y=300 μm) B点(x=1000 μm, y=200 μm) C点(x=0 μm, y=0 μm) 最大相关系数对齐 960 876 330 最小相关差值对齐 737 614 313 表 2 不同降噪方法的MTD值
降噪方法 A点(x=800 μm, y=300 μm) B点(x=1000 μm, y=200 μm) C点(x=0 μm, y=0 μm) 小波降噪 688 429 293 KSVD降噪 308 361 244 表 3 SNR计算结果(a.u.)
未对齐 对齐 对齐+降噪 A点(x=800 μm, y=300 μm) 0.6322 0.7729 0.8409 B点(x=1000 μm, y=200 μm) 0.5473 0.7671 0.7995 C点(x=0 μm, y=0 μm) 0.5315 0.9084 0.9000 FPGA(x=0 mm, y=0 mm) 0.5606 0.7582 0.7626 表 4 t-test评估结果
未对齐 对齐 对齐+降噪 A点(x=800 μm, y=300 μm) 4.0437 4.4323 5.0613 B点(x=1000 μm, y=200 μm) 0.5188 4.5141 4.9890 C点(x=0 μm, y=0 μm) 1.2355 6.5763 7.3486 -
[1] NIST. FIPS 140-3 Security requirements for cryptographic modules[S]. Gaithersburg, USA: NIST, 2019. [2] 国家密码管理局. GM/T 0028-2014 密码模块安全技术要求[S]. 北京: 中国标准出版社, 2014.State Cryptography Administration. GM/T 0028-2014 Security requirements for cryptographic modules[S]. Beijing: Standards Press of China, 2014. [3] 国家密码管理局. GM/T 0008-2012 安全芯片密码检测准则[S]. 北京: 中国标准出版社, 2012.State Cryptography Administration. GM/T 0008-2012 Cryptography test criteria for security IC[S]. Beijing: Standards Press of China, 2012. [4] CHARI S, RAO J R, and ROHATGI P. Template attacks[C]. 4th International Workshop on Cryptographic Hardware & Embedded Systems, Redwood Shores, USA, 2003: 13–28. [5] LE T H, CLEDIERE J, SERVIERE C, et al. Noise reduction in side channel attack using fourth-order cumulants[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(4): 710–720. doi: 10.1109/TIFS.2007.910252 [6] LIU Wei, WU Liji, ZHANG Xiangmin, et al. Wavelet-based noise reduction in power analysis attack[C]. The 10th International Conference on Computational Intelligence and Security, Kunming, China, 2014: 405–409. [7] FLANDRIN P, GONÇALVÈS P, and RILLING G. EMD equivalent filter banks, from interpretation to applications[M]. HUANG N E, SHEN S S P. Hilbert-Huang Transform and its Applications. Singapore: World Scientific Publishing Co., 2005: 57–74. [8] CHENG Kefei, SONG Ziyan, CUI Xiaotong, et al. Hybrid denoising based correlation power analysis for AES[C]. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2021: 1192–1195. [9] MÜLLER M. Dynamic time warping[M]. MÜLLER M. Information Retrieval for Music and Motion. Berlin Heidelberg: Springer, 2007: 69–84. [10] VAN WOUDENBERG J G J, WITTEMAN M F, and BAKKER B. Improving differential power analysis by elastic alignment[C]. International Conference on Topics in Cryptology, San Francisco, USA, 2011: 104–119. [11] ZHANG Fan, DONG Xiaofei, YANG Bolin, et al. A systematic evaluation of wavelet-based attack framework on random delay countermeasures[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1407–1422. doi: 10.1109/TIFS.2019.2941774 [12] 袁庆军, 王安, 王永娟, 等. 基于流形学习能量数据预处理的模板攻击优化方法[J]. 电子与信息学报, 2020, 42(8): 1853–1861. doi: 10.11999/JEIT190598YUAN Qingjun, WANG An, WANG Yongjuan, et al. An improved template analysis method based on power traces preprocessing with manifold learning[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1853–1861. doi: 10.11999/JEIT190598 [13] JIA Anni, YANG Wei, and ZHANG Gongxuan. Side channel leakage alignment based on longest common subsequence[C]. 2020 IEEE 14th International Conference on Big Data Science and Engineering (BigDataSE), Guangzhou, China, 2020: 130–137. [14] 程小明, 林金森, 张正国. 高分辨心电图中模板匹配算法的改进[J]. 中国生物医学工程学报, 1999, 18(1): 89–96,108. doi: 10.3969/j.issn.0258-8021.1999.01.012CHENG Xiaoming, LIN Jinsen, and ZHANG Zhengguo. An improved template matching method for high resolution ECG[J]. Chinese Journal of Biomedical Engineering, 1999, 18(1): 89–96,108. doi: 10.3969/j.issn.0258-8021.1999.01.012 [15] 李衡. 基于小波降噪数据预处理的硬件木马检测优化[D]. [硕士论文], 河北工业大学, 2016.LI Heng. Hardware Trojan detection optimization based on wavelet de-noising data preprocessing[D]. [Master dissertation], Hebei University of Technology, 2016. [16] CHOWDHURY S K R and CHATTERJEE A. Speech enhancement using K-sparse autoencoder techniques[C]. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 2021: 518–525. [17] 张春蕾. 变形信号的去噪方法与去噪效果评价指标改进[J]. 浙江测绘, 2010(1): 13–14.ZHANG Chunlei. The denoising method and evaluation index of deformable signal are improved[J]. Zhejiang Surveying and Mapping, 2010(1): 13–14. [18] 段二朋. 分组密码芯片的电磁分析攻击技术研究[D]. [硕士论文], 解放军信息工程大学, 2012.DUAN Erpeng. The research on electromagnetic analysis attack for block crypto chips[D]. [Master dissertation], Information Engineering University, 2012. [19] 陈华, 习伟, 范丽敏, 等. 密码产品的侧信道分析与评估[J]. 电子与信息学报, 2020, 42(8): 1836–1845. doi: 10.11999/JEIT190853CHEN Hua, XI Wei, FAN Limin, et al. Side channel analysis and evaluation on cryptographic products[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1836–1845. doi: 10.11999/JEIT190853