高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于用户行为序列的短视频用户多行为点击预测模型

顾亦然 王雨 杨海根

顾亦然, 王雨, 杨海根. 基于用户行为序列的短视频用户多行为点击预测模型[J]. 电子与信息学报, 2023, 45(2): 672-679. doi: 10.11999/JEIT211458
引用本文: 顾亦然, 王雨, 杨海根. 基于用户行为序列的短视频用户多行为点击预测模型[J]. 电子与信息学报, 2023, 45(2): 672-679. doi: 10.11999/JEIT211458
GU Yiran, WANG Yu, YANG Haigen. Multi-action Click Prediction Model for Short Video Users Based On User’s Behavior Sequence[J]. Journal of Electronics & Information Technology, 2023, 45(2): 672-679. doi: 10.11999/JEIT211458
Citation: GU Yiran, WANG Yu, YANG Haigen. Multi-action Click Prediction Model for Short Video Users Based On User’s Behavior Sequence[J]. Journal of Electronics & Information Technology, 2023, 45(2): 672-679. doi: 10.11999/JEIT211458

基于用户行为序列的短视频用户多行为点击预测模型

doi: 10.11999/JEIT211458
基金项目: 科技部重点研发计划(SQ2021YFB3300069)
详细信息
    作者简介:

    顾亦然:女,教授,研究方向为复杂网络、大数据处理等

    王雨:男,硕士生,研究方向为推荐算法、深度学习等

    杨海根:男,副教授,研究方向为无线通信、虚拟论证、虚拟设计等

    通讯作者:

    顾亦然 guyr@njupt.edu.cn

  • 中图分类号: TN911.73; TP181

Multi-action Click Prediction Model for Short Video Users Based On User’s Behavior Sequence

Funds: The Key R&D Program of Ministry of Science and Technology, China (SQ2021YFB3300069)
  • 摘要: 目前主流的点击预测模型采用线性模型和深度神经网络相结合的方法学习用户与物品之间特征交互,忽略了用户的历史行为本质上是一个动态序列的事实,从而导致无法有效捕获用户行为序列中蕴含的时间信息。为此,该文提出了基于用户行为序列的短视频用户多行为点击预测模型(USCP)。该模型将用户的历史行为按交互时间的顺序排序,生成用户历史行为序列。在DeepFM模型的基础上引入词嵌入模型Word2Vec,根据用户历史行为序列自适应学习到该用户的动态兴趣,有效捕获到用户兴趣的变化。在某短视频平台上公开的脱敏数据集上进行了对比实验,评价指标采用GAUC(Group AUC),结果表明该模型性能优于其他几个模型。
  • 图  1  模型结构图

    图  2  Skip-Gram 模型图

    图  3  USCP模型的超参数研究

    表  1  Word2Vec模型参数

    向量维数sg当前词与预测词的最大间距线程数步数
    16110241
    下载: 导出CSV

    表  2  模型性能比较

    模型查看评论点赞点击头像转发GAUC
    Wide&Deep0.615420.615750.691220.653890.63452
    MMOE0.631470.617760.712440.683280.64873
    DeepFM0.631760.617340.719390.708300.65261
    USCP0.635610.631830.728060.724450.66185
    下载: 导出CSV
  • [1] WANG Xinfei. A survey of online advertising click-through rate prediction models[C]. 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 2020: 516–521.
    [2] CHAPELLE O, MANAVOGLU E, and ROSALES R. Simple and scalable response prediction for display advertising[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 5(4): 61. doi: 10.1145/2532128
    [3] GAI Kun, ZHU Xiaoqiang, LI Han, et al. Learning piece-wise linear models from large scale data for Ad click prediction[J]. arXiv: 1704.05194, 2017.
    [4] RENDLE S. Factorization machines[C]. 2010 IEEE International Conference on Data Mining, Sydney, Australia, 2010: 995–1000.
    [5] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]. The 1st Workshop on Deep Learning for Recommender Systems, Boston, USA, 2016: 7–10.
    [6] GUO Huifeng, TANG Ruiming, YE Yunming, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 1725–1731.
    [7] LIPTON Z C. A critical review of recurrent neural networks for sequence learning[J]. arXiv: 1506.00019, 2015.
    [8] HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [9] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]. The 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734.
    [10] WANG Shoujin, HU Liang, WANG Yan, et al. Sequential recommender systems: Challenges, progress and prospects[C]. The Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 2019: 6332–6338.
    [11] MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[C]. The 1st International Conference on Learning Representations, Scottsdale, USA, 2013.
    [12] BAEK J W and CHUNG K Y. Multimedia recommendation using Word2Vec-based social relationship mining[J]. Multimedia Tools and Applications, 2021, 80(26): 34499–34515. doi: 10.1007/s11042-019-08607-9
    [13] ESMELI R, BADER-EL-DEN M, and ABDULLAHI H. Using Word2Vec recommendation for improved purchase prediction[C]. 2020 International Joint Conference on Neural Networks, Glasgow, UK, 2020: 1–8.
    [14] 王瑞平, 贾真, 刘畅, 等. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226–232. doi: 10.11896/jsjkx.191200098

    WANG Ruiping, JIA Zhen, LIU Chang, et al. Deep interest factorization machine network based on DeepFM[J]. Computer Science, 2021, 48(1): 226–232. doi: 10.11896/jsjkx.191200098
    [15] 陈一文. 一种改进的基于DeepFM算法的高效CTR预估方法[D]. [硕士论文], 吉林大学, 2020.

    CHEN Yiwen. An efficient CTR prediction method based on improved DeepFM algorithm[D]. [Master dissertation], Jilin University, 2020.
    [16] CHEN Qiwei, ZHAO Huan, LI Wei, et al. Behavior sequence transformer for e-commerce recommendation in Alibaba[C]. The 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data, Anchorage, Alaska, 2019: 12.
    [17] MA Jiaqi, ZHAO Zhe, YI Xinyang, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 1930–1939.
    [18] ZHU Han, JIN Junqi, TAN Chang, et al. Optimized cost per click in Taobao display advertising[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 2191–2200.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  822
  • HTML全文浏览量:  851
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-06-07
  • 录用日期:  2022-06-08
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回