高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机集群的近场线性稀疏阵列波束形成研究

张逸楠 王广学 彭世蕤 冷毅

张逸楠, 王广学, 彭世蕤, 冷毅. 基于无人机集群的近场线性稀疏阵列波束形成研究[J]. 电子与信息学报, 2023, 45(1): 181-190. doi: 10.11999/JEIT211452
引用本文: 张逸楠, 王广学, 彭世蕤, 冷毅. 基于无人机集群的近场线性稀疏阵列波束形成研究[J]. 电子与信息学报, 2023, 45(1): 181-190. doi: 10.11999/JEIT211452
ZHANG Yinan, WANG Guangxue, PENG Shirui, LENG Yi. Beamforming Research for Near-field Linear Sparse Array Based on Unmanned Aerial Vehicle Swarm[J]. Journal of Electronics & Information Technology, 2023, 45(1): 181-190. doi: 10.11999/JEIT211452
Citation: ZHANG Yinan, WANG Guangxue, PENG Shirui, LENG Yi. Beamforming Research for Near-field Linear Sparse Array Based on Unmanned Aerial Vehicle Swarm[J]. Journal of Electronics & Information Technology, 2023, 45(1): 181-190. doi: 10.11999/JEIT211452

基于无人机集群的近场线性稀疏阵列波束形成研究

doi: 10.11999/JEIT211452
基金项目: 国家自然科学基金(62101592)
详细信息
    作者简介:

    张逸楠:女,博士生,主要研究方向为信息与通信工程信息对抗技术

    王广学:男,博士,主要研究方向为雷达对抗

    彭世蕤:男,教授,博士生导师,主要研究方向为电子对抗技术、微波技术与电磁场

    冷毅:男,副教授,硕士生导师,主要研究方向为雷达对抗、电子对抗无人机

    通讯作者:

    张逸楠 907059400@qq.com

  • 中图分类号: TN957

Beamforming Research for Near-field Linear Sparse Array Based on Unmanned Aerial Vehicle Swarm

Funds: The National Natural Science Foundation of China (62101592)
  • 摘要: 无人机集群构成的天线阵列常呈现近场、稀疏特性,经典波束形成理论无法适配。为此,该文首先构建了近场均匀线阵信号模型,通过对信号相位差函数进行泰勒展开近似提出基于线性调频脉冲压缩处理的近场波束形成简化实现方法,并以此为基础在空间-频率2维域内对近场波束形成特性进行了分析:从空间频率偏移和带宽失配的角度,分析得到了近场波束的方位向增益变化特性和距离向增益变化特性;从空间欠采样的角度,研究提出了阵元稀疏分布条件下近场波束栅瓣分布的解析表达式。仿真证明了该文结论的有效性,为利用波束形成技术提高无人机集群的通信、电子侦察、干扰能力提供了理论支撑。
  • 图  1  近场线性稀疏阵列模型

    图  2  两阵元的双曲线簇模型

    图  3  ${\theta _I} = 0{^\circ}$时经典与近似波束形成比较

    图  4  ${\theta _I} = 2{^\circ}$时经典与近似波束形成比较

    图  5  距离向波束图

    图  6  方位向波束图

    图  7  曲面范围内目标波束图

    图  8  波束投影及栅瓣分布计算

    图  9  波束扫描曲面范围波束图

    图  10  波束扫描投影及栅瓣分布计算

  • [1] BARB G, OTESTEANU M, ALEXA F, et al. Digital beamforming techniques for future communications systems[C]. The 12th International Symposium on Communication Systems, Networks and Digital Signal Processing, Porto, Portugal, 2020: 1–4.
    [2] HAMID U, QAMAR R A, and WAQAS K. Performance comparison of time-domain and frequency-domain beamforming techniques for sensor array processing[C]. The 2014 11th International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, 14th - 18th January, 2014, Islamabad, Pakistan, 2014: 379–385.
    [3] 张苗苗, 刘益嘉, 王梦玄, 等. 超声平面波同相正交信号频域波束形成算法[J]. 声学学报, 2021, 46(1): 121–129. doi: 10.15949/j.cnki.0371-0025.2021.01.012

    ZHANG Miaomiao, LIU Yijia, WANG Mengxuan, et al. Fourier-based ultrasound plane wave beamforming using in-phase and quadrature data[J]. Acta Acustica, 2021, 46(1): 121–129. doi: 10.15949/j.cnki.0371-0025.2021.01.012
    [4] HUANG Hao, PENG Yang, YANG Jie, et al. Fast beamforming design via deep learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1065–1069. doi: 10.1109/TVT.2019.2949122
    [5] ZURAKHOV G, FRIEDMAN Z, BLONDHEIM D S, et al. High-resolution fast ultrasound imaging with adaptive-lag filtered delay-multiply-and-sum beamforming and multiline acquisition[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66(2): 348–358. doi: 10.1109/TUFFC.2018.2886182
    [6] ZHU Lipeng, ZHANG Jun, XIAO Zhenyu, et al. 3-D beamforming for flexible coverage in millimeter-wave UAV communications[J]. IEEE Wireless Communications Letters, 2019, 8(3): 837–840. doi: 10.1109/LWC.2019.2895597
    [7] XIAO Zhenyu, ZHU Lipeng, and XIA Xianggen. UAV communications with millimeter-wave beamforming: Potentials, scenarios, and challenges[J]. China Communications, 2020, 17(9): 147–166. doi: 10.23919/JCC.2020.09.012
    [8] RAJAMÄKI R, CHEPURI S P, and KOIVUNEN V. Hybrid beamforming for active sensing using sparse arrays[J]. IEEE Transactions on Signal Processing, 2020, 68: 6402–6417. doi: 10.1109/TSP.2020.3032657
    [9] 韩国栋, 贾春来, 高冲, 等. 一种基于无人机群的三维组阵天线[P]. 中国专利, 110635255A, 2019.

    HAN Guodong, JIA Chunlai, GAO Chong, et al. Three-dimensional array antenna based on unmanned aerial vehicle group[P]. China Patent, 110635255A, 2019.
    [10] BAO Chaoying, FARAG G, and PAN J. Comparison of the performance of time domain and time-frequency domain adaptive beamforming[C]. OCEANS'10 IEEE OCEANS, Sydney Australia, 2010: 1–4.
    [11] NGUYEN D, ZOMORRODI M, KARMAKAR N, et al. Efficient beamforming technique based on sparse MIMO array and spatial filter bank[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1147–1151. doi: 10.1109/LAWP.2020.2991993
    [12] DING Yipeng and LI Zhengmin. A blind beamforming algorithm based on time-frequency analysis technology[C]. The 2021 6th International Conference on Intelligent Computing and Signal Processing, Xi’an, China, 2021: 367–371.
    [13] 黄俊生, 苏洪涛. 二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法[J]. 电子与信息学报, 2020, 42(7): 1557–1565. doi: 10.11999/JEIT190429

    HUANG Junsheng and SU Hongtao. Joint transmitting subarray partition and beamforming design method based on two-dimensional phased-MIMO radar[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1557–1565. doi: 10.11999/JEIT190429
    [14] 彭芳, 吴军, 王帅, 等. 基于SVRGD的机载预警雷达自适应波束形成算法[J]. 系统工程与电子技术, 2021, 43(1): 83–90. doi: 10.3969/j.issn.1001-506X.2021.01.11

    PENG Fang, WU Jun, WANG Shuai, et al. Adaptive beamforming algorithm for airborne early warning radar based on SVRGD[J]. Systems Engineering and Electronics, 2021, 43(1): 83–90. doi: 10.3969/j.issn.1001-506X.2021.01.11
    [15] 吕岩, 曹菲. 基于线性约束最小方差的稳健波束形成算法[J/OL]. 北京航空航天大学学报, 2022: 1–12. https://doi.org/10.13700/j.bh.1001-5965.2021.0280, 2022

    LYU Yan and CAO Fei. Robust beamforming based on linear constraint minimum variance algorithm[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2022: 1–12. https://doi.org/10.13700/j.bh.1001-5965.2021.0280, 2022
    [16] LIU Shuai, CAO Yunhe, YEO T S, et al. Range sidelobe suppression for randomized stepped-frequency chirp radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3874–3885. doi: 10.1109/TAES.2021.3082670
    [17] JIA Fengde, SUN Guohao, HE Zishu, et al. Grating-lobe clutter suppression in uniform subarray for airborne radar STAP[J]. IEEE Sensors Journal, 2019, 19(16): 6956–6965. doi: 10.1109/JSEN.2019.2912827
    [18] ZHU Rongqiang, ZHOU Jianxiong, JIANG Ge, et al. Grating lobe suppression in near range MIMO array imaging using zero migration[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(1): 387–397. doi: 10.1109/TMTT.2019.2941188
    [19] HU Cheng, CHEN Zhiyang, DONG Xichao, et al. Multistatic geosynchronous SAR resolution analysis and grating lobe suppression based on array spatial ambiguity function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6020–6038. doi: 10.1109/TGRS.2020.2969573
    [20] 刘雄厚, 孙超, 杨益新, 等. 利用发射栅瓣的成像方法[P]. 中国专利, 201510209224.8, 2015.

    LIU Xionghou, SUN Chao, YANG Yixin, et al. Imaging method through transmitting grating lobes[P]. China Patent, 201510209224.8, 2015.
    [21] 张嘉焱. 高功率微波空间功率合成的初步研究[D]. [硕士论文]. 国防科学技术大学, 2006.

    ZHANG Jiayan. Primary study on spatial powers combining of high power microwave[D]. [Master dissertation]. National University of Defense Technology, 2006.
    [22] 傅文斌. 微波技术与天线[M]. 2版. 北京: 机械工业出版社, 2013: 203–205.

    FU Wenbin. Microwave Technology and Antenna[M]. 2nd ed. Beijing: China Machine Press, 2013: 203–205.
  • 加载中
图(10)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  226
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-05-11
  • 录用日期:  2022-06-01
  • 网络出版日期:  2022-06-07
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回