高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于北极双轴声道的改进压缩匹配场定位算法研究

吕玉娇 刘崇磊 张扬帆 黄海宁

吕玉娇, 刘崇磊, 张扬帆, 黄海宁. 一种适用于北极双轴声道的改进压缩匹配场定位算法研究[J]. 电子与信息学报, 2022, 44(6): 1991-1998. doi: 10.11999/JEIT211445
引用本文: 吕玉娇, 刘崇磊, 张扬帆, 黄海宁. 一种适用于北极双轴声道的改进压缩匹配场定位算法研究[J]. 电子与信息学报, 2022, 44(6): 1991-1998. doi: 10.11999/JEIT211445
LÜ Yujiao, LIU Chonglei, ZHANG Yangfan, HUANG Haining. Research on an Improved Compressive Matched Field Localization Algorithm for Arctic Double Channels[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1991-1998. doi: 10.11999/JEIT211445
Citation: LÜ Yujiao, LIU Chonglei, ZHANG Yangfan, HUANG Haining. Research on an Improved Compressive Matched Field Localization Algorithm for Arctic Double Channels[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1991-1998. doi: 10.11999/JEIT211445

一种适用于北极双轴声道的改进压缩匹配场定位算法研究

doi: 10.11999/JEIT211445
基金项目: 国家重点研发计划(2021YFC2801200)
详细信息
    作者简介:

    吕玉娇:女,1995年生,博士生,研究方向为水声信号处理、阵列信号处理

    刘崇磊:男,1990年生,副研究员,研究方向为水声信号处理、阵列信号处理、水声通信

    张扬帆:女,1979年生,研究员,研究方向为水声信号处理、水声通信

    黄海宁:男,1969年生,研究员,博士生导师,研究方向为阵列信号处理、水下无线传感器网络、合成孔径声呐

    通讯作者:

    黄海宁 hhn@mail.ioa.ac.cn

  • 中图分类号: TB566

Research on an Improved Compressive Matched Field Localization Algorithm for Arctic Double Channels

Funds: The National Key Research and Development Program of China (2021YFC2801200)
  • 摘要: 北极水域信道特殊,匹配场处理作为一类可结合环境信息进行信号处理的目标定位方法,在模型匹配时可以准确估计出声源位置,但存在环境变化复杂且信息了解少的问题,导致模型很难完全匹配,从而出现位置估计不准确的问题。该文提出建立一种改进的压缩匹配场模型,并基于相位归一化原理对稀疏模型进行优化,利用归一化阵元域信息进行匹配,以消除声源频谱的影响,提高压缩匹配场的定位准确度。仿真结果表明,改进后方法比改进前方法的定位准确率更高;试验数据处理表明,单快拍下改进后方法比改进前方法在目标位置估计上误差更小,比常规匹配场方法的分辨率更高。
  • 图  1  环境仿真模型

    图  2  信噪比为0 dB情况下定位结果比较

    图  3  信噪比为5 dB情况下定位结果比较

    图  4  信噪比为14 dB情况下定位结果比较

    图  5  不同方法的定位准确度

    图  6  不同假设下统计量的概率密度分布函数

    图  7  不同快拍下的ROC曲线

    图  8  试验环境声速剖面

    图  9  上表面反射较弱情况下的传播损失

    图  10  接收信号时频图

    图  11  声源距离随时间变化情况

    图  12  不同方法的多频点处理结果

    表  1  统计误差

    信噪比(dB)估计目标常规匹配场压缩匹配场改进方法
    0距离(km)3.143.033.16
    深度(m)24.2625.6925.80
    5距离(km)1.041.671.69
    深度(m)6.3010.6910.30
    14距离(km)0.434.701.99
    深度(m)0.050.650.20
    下载: 导出CSV

    表  2  参数设置

    厚度(m)压缩波速(m/s)切向波速(m/s)密度(g/cm3)压缩波衰减(dB/(km·Hz))剪切波衰减(dB/(km·Hz))
    介质11019.450100
    沉积层20000200
    下载: 导出CSV

    表  3  估计结果比较

    测量常规匹配场压缩匹配场改进方法
    距离(km)45.701.154.10
    深度(m)457411164
    下载: 导出CSV
  • [1] BUCKER H P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water[J]. The Journal of the Acoustical Society of America, 1976, 59(2): 368–373. doi: 10.1121/1.380872
    [2] WESTWOOD E K. Broadband matched-field source localization[J]. The Journal of the Acoustical Society of America, 1992, 91(5): 2777–2789. doi: 10.1121/1.402958
    [3] BOOTH N O, BAXLEY P A, RICE J A, et al. Source localization with broad-band matched-field processing in shallow water[J]. IEEE Journal of Oceanic Engineering, 1996, 21(4): 402–412. doi: 10.1109/48.544051
    [4] BAGGEROER A B, KUPERMAN W A, and SCHMIDT H. Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem[J]. The Journal of the Acoustical Society of America, 1988, 83(2): 571–587. doi: 10.1121/1.396151
    [5] THODE A M, KUPERMAN W A, D’SPAIN G L, et al. Localization using Bartlett matched-field processor sidelobes[J]. The Journal of the Acoustical Society of America, 2000, 107(1): 278–286. doi: 10.1121/1.428304
    [6] KROLIK J L. Matched-field minimum variance beamforming in a random ocean channel[J]. The Journal of the Acoustical Society of America, 1992, 92(3): 1408–1419. doi: 10.1121/1.403935
    [7] OZARD J M, BROOKE G H, and BROUWER P. Improving performance for matched field processing with a minimum variance beamformer[J]. The Journal of the Acoustical Society of America, 1992, 91(1): 141–150. doi: 10.1121/1.402763
    [8] MICHALOPOULOU Z H, POLE A, and ABDI A. Bayesian coherent and incoherent matched-field localization and detection in the ocean[J]. The Journal of the Acoustical Society of America, 2019, 146(6): 4812–4820. doi: 10.1121/1.5138134
    [9] ZHU Guolei, WANG Yingmin, and WANG Qi. Matched field processing based on Bayesian estimation[J]. Sensors, 2020, 20(5): 1374. doi: 10.3390/s20051374
    [10] MISHRA I and JAIN S. Soft computing based compressive sensing techniques in signal processing: A comprehensive review[J]. Journal of Intelligent Systems, 2020, 30(1): 312–326. doi: 10.1515/jisys-2019-0215
    [11] CHU Jichen and XU Wen. Investigation of typical methods applied to compressive matched field processing[C]. The International Conference on Underwater Networks & Systems, Atlanta, USA, 2019: Article No. : 5.
    [12] CAO Ran, YANG Kunde, YANG Qiulong, et al. Localization of two sound sources based on compressed matched field processing with a short hydrophone array in the deep ocean[J]. Sensors, 2019, 19(17): 3810. doi: 10.3390/s19173810
    [13] MANTZEL W, ROMBERG J, and SABRA K. Compressive matched-field processing[J]. The Journal of the Acoustical Society of America, 2012, 132(1): 90–102. doi: 10.1121/1.4728224
    [14] GEMBA K L, HODGKISS W S, and GERSTOFT P. Adaptive and compressive matched field processing[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 92–103. doi: 10.1121/1.4973528
    [15] GEMBA K L, HODGKISS W S, and GERSTOFT P. Multiple snapshot and multiple frequency compressive matched field processing[J]. The Journal of the Acoustical Society of America, 2016, 139(4): 2082. doi: 10.1121/1.4950179
    [16] ORRIS G J, NICHOLAS M, and PERKINS J S. The matched-phase coherent multi-frequency matched-field processor[J]. The Journal of the Acoustical Society of America, 2000, 107(5): 2563–2575. doi: 10.1121/1.428644
    [17] CHEN Teyan, LIU Chunshan, and ZAKHAROV Y V. Source localization using matched-phase matched-field processing with phase descent search[J]. IEEE Journal of Oceanic Engineering, 2012, 37(2): 261–270. doi: 10.1109/JOE.2011.2181269
    [18] VIROVLYANSKY A L, KAZAROVA A Y, and LYUBAVIN L Y. Matched field processing in phase space[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1583–1593. doi: 10.1109/JOE.2019.2927652
    [19] PEYRE G. Best basis compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2613–2622. doi: 10.1109/TSP.2010.2042490
    [20] MICHALOPOULOU Z H. Robust multi-tonal matched-field inversion: A coherent approach[J]. The Journal of the Acoustical Society of America, 1998, 104(1): 163–170. doi: 10.1121/1.423954
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  208
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-03-28
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回