高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向水声传感网的自主水下航行器辅助定位动态路径规划

黄沛烁 王易因 关新平 黄梦醒

黄沛烁, 王易因, 关新平, 黄梦醒. 面向水声传感网的自主水下航行器辅助定位动态路径规划[J]. 电子与信息学报, 2022, 44(6): 1927-1936. doi: 10.11999/JEIT211432
引用本文: 黄沛烁, 王易因, 关新平, 黄梦醒. 面向水声传感网的自主水下航行器辅助定位动态路径规划[J]. 电子与信息学报, 2022, 44(6): 1927-1936. doi: 10.11999/JEIT211432
HUANG Peishuo, WANG Yiyin, GUAN Xinping, HUANG Mengxing. Dynamic Path Planning for Autonomous Underwater Vehicle Assisted Localization of Underwater Acoustic Aensor Networks[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1927-1936. doi: 10.11999/JEIT211432
Citation: HUANG Peishuo, WANG Yiyin, GUAN Xinping, HUANG Mengxing. Dynamic Path Planning for Autonomous Underwater Vehicle Assisted Localization of Underwater Acoustic Aensor Networks[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1927-1936. doi: 10.11999/JEIT211432

面向水声传感网的自主水下航行器辅助定位动态路径规划

doi: 10.11999/JEIT211432
基金项目: 国家自然科学基金(61773264, 61633017), 上海交通大学深蓝计划(SL2020MS011, SL2020MS015)
详细信息
    作者简介:

    黄沛烁:男,1990年生,博士生,研究方向为水声传感网络定位与移动终端机器学习

    王易因:女,1980年生,研究员,研究方向为水下无线网络通信与定位

    关新平:男,1963年生,教授,研究方向为海洋智能信息系统与海洋信息感知

    黄梦醒:男,1973年生,教授,研究方向为多源海洋信息协同感知与融合

    通讯作者:

    王易因 yiyinwang@sjtu.edu.cn

  • 中图分类号: TN929.3; TP393

Dynamic Path Planning for Autonomous Underwater Vehicle Assisted Localization of Underwater Acoustic Aensor Networks

Funds: The National Natural Science Foundation of China (61773264, 61633017), The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (SL2020MS011, SL2020MS015)
  • 摘要: 水声传感器网络(UASNs)节点由于洋流等因素长时间作用会出现位置偏移,故需要修正其位置信息。在水声传感器网络节点定位中将自主式水下潜器(AUV)作为移动锚点辅助定位可有效降低定位成本,但在AUV辅助定位过程中AUV的能量利用率仍有待提升。为了进一步提高AUV的能量利用率,该文提出一种面向水声传感网的AUV辅助定位动态路径规划方法。该方法中将节点位置修正过程看成节点位置信息熵减少的过程。在AUV动态路径规划时根据定位过程的节点位置信息和预计AUV能耗,规划AUV下一步移动目标位置。使用贪婪算法选取使信息增益期望和移动消耗能量比值最大的位置作为AUV下一步移动目标位置。仿真结果表明,该算法能够在保证节点定位精度的基础上有效提高AUV能量利用率。
  • 图  1  AUV辅助定位

    图  2  水下传感器节点位置修正

    图  3  使用交集定位

    图  4  使用差集定位

    图  5  动态路径规划

    图  6  路径规划示意图

    图  7  $ \beta $不同取值下CDF对比

    图  8  不同噪声下CDF对比

    图  9  不同噪声下统计结果

    图  10  3维下CDF对比

    图  11  不同噪声下统计结果

    表  1  统计学分析对比

    算法误差均值 (m)误差标准差 (m)平均虚拟锚点个数规划路径长度 (m)
    本文方法$ \beta {\text{ = }}4,\varepsilon {\text{ = }}1,\delta {\text{ = }}2 $1.320.7318.881531.61
    本文方法$ \beta {\text{ = }}4,\varepsilon {\text{ = 2}},\delta {\text{ = }}3 $1.770.7922.271825.22
    SLMAT $ \varepsilon {\text{ = }}1,\delta {\text{ = }}2 $1.450.7433.003226.41
    SLMAT $ \varepsilon {\text{ = 2,}}\delta {\text{ = 3}} $2.171.1233.003226.41
    MBL(ndc) $ \varepsilon {\text{ = }}1,\delta {\text{ = }}2 $11.28169.6929.891393.98
    MBL(ndc) $ \varepsilon {\text{ = 2,}}\delta {\text{ = }}3 $16.16236.0429.791394.60
    下载: 导出CSV

    表  2  统计学分析

    算法误差均值 (m)误差标准差 (m)平均虚拟锚点个数规划路径长度(m)
    本文方法$ \beta {\text{ = }}4,\varepsilon {\text{ = }}1,\delta {\text{ = }}2 $1.880.7744.993748.25
    本文方法$ \beta {\text{ = }}4,\varepsilon {\text{ = 2}},\delta {\text{ = }}3 $2.040.8363.215262.74
    本文方法$ \beta {\text{ = }}5,\varepsilon {\text{ = }}1,\delta {\text{ = }}2 $2.010.9341.213420.12
    本文方法$ \beta {\text{ = }}6,\varepsilon {\text{ = }}1,\delta {\text{ = }}2 $2.541.7534.752894.30
    本文方法$ \beta {\text{ = }}7,\varepsilon {\text{ = }}1,\delta {\text{ = }}2 $3.463.0830.472534.89
    下载: 导出CSV
  • [1] HAN Guangjie, JIANG Jinfang, ZHANG Chenyu, et al. A survey on mobile anchor node assisted localization in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2220–2243. doi: 10.1109/COMST.2016.2544751
    [2] KOUTSONIKOLAS D, DAS S M, and HU Y C. Path planning of mobile landmarks for localization in wireless sensor networks[J]. Computer Communications, 2007, 30(13): 2577–2592. doi: 10.1016/j.comcom.2007.05.048
    [3] HAN Guangjie, YANG Xuan, LIU Li, et al. A disaster management-oriented path planning for mobile anchor node-based localization in wireless sensor networks[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(1): 115–125. doi: 10.1109/TETC.2017.2687319
    [4] 赵方, 马严, 罗海勇, 等. 一种基于网络密度分簇的移动信标辅助定位方法[J]. 电子与信息学报, 2009, 31(12): 2988–2992. doi: 10.3724/SP.J.1146.2008.01532

    ZHAO Fang, MA Yan, LUO Haiyong, et al. A mobile beacon-assisted node localization algorithm using network-density-based clustering for wireless sensor networks[J]. Journal of Electronics &Information Technology, 2009, 31(12): 2988–2992. doi: 10.3724/SP.J.1146.2008.01532
    [5] SALLOUHA H, AZARI M M, and POLLIN S. Energy-constrained UAV trajectory design for ground node localization[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–7.
    [6] ALOMARI A, PHILLIPS W, ASLAM N, et al. Dynamic fuzzy-logic based path planning for mobility-assisted localization in wireless sensor networks[J]. Sensors, 2017, 17(8): 1904. doi: 10.3390/s17081904
    [7] EROL M, VIEIRA L F M, and GERLA M. AUV-aided localization for underwater sensor networks[C]. International Conference on Wireless Algorithms, Systems and Applications, Chicago, USA, 2007: 44–54.
    [8] XIA Youjie, WANG Yiyin, MA Xiaoli, et al. Joint time synchronization and localization for underwater acoustic sensor networks[C]. The 10th International Conference on Underwater Networks & Systems, Arlington, USA, 2015: 43.
    [9] MRIDULA K M and AMEER P M. Localization under anchor node uncertainty for underwater acoustic sensor networks[J]. International Journal of Communication Systems, 2018, 31(2): e3445. doi: 10.1002/dac.3445
    [10] ZHANG Wenbo, HAN Guangjie, WANG Xin, et al. A node location algorithm based on node movement prediction in underwater acoustic sensor networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3166–3178. doi: 10.1109/TVT.2019.2963406
    [11] SU Yishan, GUO Lei, JIN Zhigang, et al. A mobile-beacon-based iterative localization mechanism in large-scale underwater acoustic sensor networks[J]. IEEE Internet of Things Journal, 2021, 8(5): 3653–3664. doi: 10.1109/JIOT.2020.3023556
    [12] XU Tingting, WANG Jingjing, SHI Wei, et al. A localization algorithm using a mobile anchor node based on region determination in underwater wireless sensor networks[J]. Journal of Ocean University of China, 2019, 18(2): 394–402. doi: 10.1007/s11802-019-3724-x
    [13] HAN Guangjie, XU Huihui, JIANG Jinfang, et al. Path planning using a mobile anchor node based on trilateration in wireless sensor networks[J]. Wireless Communications and Mobile Computing, 2013, 13(14): 1324–1336. doi: 10.1002/wcm.1192
    [14] SU Ruoyu, ZHANG Dengyin, LI Cheng, et al. Localization and data collection in AUV-aided underwater sensor networks: Challenges and opportunities[J]. IEEE Network, 2019, 33(6): 86–93. doi: 10.1109/MNET.2019.1800425
    [15] HAN Shuai, XU Sai, MENG Weixiao, et al. Dense-device-enabled cooperative networks for efficient and secure transmission[J]. IEEE Network, 2018, 32(2): 100–106. doi: 10.1109/MNET.2018.1700292
    [16] ZHUO Xiaoxiao, LIU Meiyan, WEI Yan, et al. AUV-aided energy-efficient data collection in underwater acoustic sensor networks[J]. IEEE Internet of Things Journal, 2020, 7(10): 10010–10022. doi: 10.1109/JIOT.2020.2988697
    [17] KHAN F A, KHAN S A, TURGUT D, et al. Greedy path planning for maximizing value of information in underwater sensor networks[C]. The 39th Annual IEEE Conference on Local Computer Networks Workshops, Edmonton, Canada, 2014: 610–615.
    [18] GJANCI P, PETRIOLI C, BASAGNI S, et al. Path finding for maximum value of information in multi-modal underwater wireless sensor networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(2): 404–418. doi: 10.1109/TMC.2017.2706689
    [19] CHEN Shihan, CHEN Yougan, ZHU Jianying, et al. Path-planning analysis of AUV-aided mobile data collection in UWA cooperative sensor networks[C]. 2020 IEEE International Conference on Signal Processing, Communications and Computing, Macau, China, 2020: 1–5.
    [20] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  767
  • HTML全文浏览量:  353
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回