高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水声网络全双工定向碰撞避免媒体接入控制协议

刘奇佩 乔钢 Suleman Mazhar

刘奇佩, 乔钢, Suleman Mazhar. 水声网络全双工定向碰撞避免媒体接入控制协议[J]. 电子与信息学报, 2023, 45(2): 524-533. doi: 10.11999/JEIT211426
引用本文: 刘奇佩, 乔钢, Suleman Mazhar. 水声网络全双工定向碰撞避免媒体接入控制协议[J]. 电子与信息学报, 2023, 45(2): 524-533. doi: 10.11999/JEIT211426
LIU Qipei, QIAO Gang, Suleman Mazhar. Full-Duplex Directional Collision Avoidance Medium Access Control Protocol for Underwater Acoustic Networks[J]. Journal of Electronics & Information Technology, 2023, 45(2): 524-533. doi: 10.11999/JEIT211426
Citation: LIU Qipei, QIAO Gang, Suleman Mazhar. Full-Duplex Directional Collision Avoidance Medium Access Control Protocol for Underwater Acoustic Networks[J]. Journal of Electronics & Information Technology, 2023, 45(2): 524-533. doi: 10.11999/JEIT211426

水声网络全双工定向碰撞避免媒体接入控制协议

doi: 10.11999/JEIT211426
基金项目: 黑龙江自然科学基金(LH2021F010)
详细信息
    作者简介:

    刘奇佩:男,博士生,研究方向为水下传感器网络、Ad Hoc网络、算法、机器学习

    乔钢:男,教授,博士生导师,研究方向为水声通信技术、OFDM通信技术、水下传感器网络

    Suleman Mazhar:男,博士,教授,研究方向为声学、机器学习

    通讯作者:

    乔钢 qiaogang@hrbeu.edu.cn

  • 中图分类号: TN929.3

Full-Duplex Directional Collision Avoidance Medium Access Control Protocol for Underwater Acoustic Networks

Funds: The Natural Science Foundation of Heilongjiang (LH2021F010)
  • 摘要: 近年来水声网络(UAN)技术飞速发展,但仍然面临诸多严峻挑战,能量效率成为水声网络的首要考虑因素。此外,水声信道传播时延大且可用带宽受限,严重制约了水声通信技术的可靠性和有效性,进而限制了水声网络的整体性能。定向通信技术可以有效改善上述情况,通过波束聚焦能力将声波能量聚集在一定角度范围内,获得比全向通信更高的通信范围和信噪比,提升整个网络的能耗效率和空间复用率。但该技术需要对目的节点的位置具备先验知识,且会面临“聋节点”问题,因此该文提出一个水声网络全双工定向碰撞避免(FDDCA)媒体接入控制(MAC)协议,通过装备两个分别处于不同工作频带的全向换能器和定向换能器解决“聋节点”问题,并通过降低节点的冲突域解决了“暴露终端”问题。仿真结果表明,与水下Aloha(UW-Aloha)和时隙地面多址接入(S-FAMA)协议相比,FDDCA在多汇聚节点的网络拓扑下吞吐量分别提升了140%和400%,网络能效上节省了90%和94%。
  • 图  1  隐藏终端和暴露终端问题

    图  2  单个模态对应的波束指向性

    图  3  系统收/发指向性

    图  4  本文所用两种通信模式示意图

    图  5  微元法计算模态换能器能量消耗

    图  6  FDDCA解决“隐藏终端”

    图  7  FDDCA解决“暴露发送终端”

    图  8  FDDCA解决“暴露接收终端”

    图  9  “聋节点”问题

    图  10  稀疏网络下邻节点发现效率

    图  11  仿真拓扑结构

    图  12  吞吐量对比

    图  13  网络能耗对比

    图  14  网络能量效率对比

    图  15  协议开销对比

    表  1  术语解释

    缩略词英文含义及目的
    NDNeighbor Discovery邻节点发现
    OHELLOOmni-HELLO一种数据包种类,使用全向模式发送
    ORTSOmni-RTS全向发送的RTS数据包,用于请求发送
    DCTSDirectional-CTS定向发送的CTS包,用于清除信道
    DDATADirectional-DATA定向发送DATA,获得高信噪比和能量效率
    OEWOmni-EarlyWarning全向发送的EarlyWarning,用于通知竞争节点退避
    OACKOmni-ACK全向发送的ACK
    下载: 导出CSV

    表  2  仿真参数设置

    参数协议类型
    FDDCA对比协议
    信号传播范围(m)20002000
    信噪比门限(dB)1010
    数据包大小(Byte)256256
    数据率(bps)50~40050~400
    物理层通信速率(bps)20002000
    载波频率(kHz)15,2525
    频带宽度(kHz)2,55
    声源级(dB)134.1,141.1141.1
    功耗(W)50,9.650
    下载: 导出CSV
  • [1] 周胜利, 王昭辉, 胡晓毅, 等. OFDM水声通信[J]. 声学学报, 2020, 45(6): 962. doi: 10.15949/j.cnki.0371-0025.2020.06.019

    ZHOU Shengli, WANG Zhaohui, HU Xiaoyi, et al. OFDM underwater acoustic communication[J]. Acta Acustica, 2020, 45(6): 962. doi: 10.15949/j.cnki.0371-0025.2020.06.019
    [2] HEIDEMANN J, STOJANOVIC M, and ZORZI M. Underwater sensor networks: Applications, advances and challenges[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2012, 370(1958): 158–175. doi: 10.1098/rsta.2011.0214
    [3] STOJANOVIC M. On the relationship between capacity and distance in an underwater acoustic communication channel[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2007, 11(4): 34–43. doi: 10.1145/1347364.1347373
    [4] STOJANOVIC M and PREISIG J, Underwater acoustic communication channels: Propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89.
    [5] FREITAG L, GRUND M, SINGH S, et al. The WHOI Micro-Modem: An acoustic communications and navigation system for multiple platforms[C]. OCEANS 2005 MTS/IEEE, Washington, United States, 2005.
    [6] ALFOUZAN F A. Energy-efficient collision avoidance MAC protocols for underwater sensor networks: Survey and challenges[J]. Journal of Marine Science and Engineering, 2021, 9(7): 741. doi: 10.3390/jmse9070741
    [7] CLIMENT S, SANCHEZ A, CAPELLA J V, et al. Underwater acoustic wireless sensor networks: Advances and future trends in physical, MAC and routing layers[J]. Sensors, 2014, 14(1): 795–833. doi: 10.3390/s140100795
    [8] PELEATO B and STOJANOVIC M. Distance aware collision avoidance protocol for ad-hoc underwater acoustic sensor networks[J]. IEEE Communications Letters, 2007, 11(12): 1025–1027. doi: 10.1109/LCOMM.2007.071160
    [9] MOLINS M and STOJANOVIC M. Slotted FAMA: A MAC protocol for underwater acoustic networks[C]. OCEANS 2006 -Asia Pacific, Singapore, 2006.
    [10] JIANG Shengming. State-of-the-Art Medium Access Control (MAC) protocols for underwater acoustic networks: A survey based on a MAC reference model[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 96–131. doi: 10.1109/COMST.2017.2768802
    [11] CHIRDCHOO N, SOH W S, and CHUA K C. RIPT: A receiver-initiated reservation-based protocol for underwater acoustic networks[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1744–1753. doi: 10.1109/jsac.2008.081213
    [12] ZHANG Jiarong, MA Xuefei, QIAO Gang, et al. A full-duplex based protocol for underwater acoustic communication networks[C]. OCEANS 2013, San Diego, United States, 2013.
    [13] NGO Q T, DANG D N M, and LE-TRUNG Q. Extreme power saving directional MAC protocol in IEEE 802.11ah networks[J]. IET Networks, 2020, 9(4): 180–188. doi: 10.1049/iet-net.2019.0176
    [14] SCHANDY J, OLOFSSON S, GAMMARANO N, et al. Improving sensor network performance with directional antennas: A cross-layer optimization[J], ACM Transactions On Sensor Networks, 2021, 17(4): 48.
    [15] DE RANGO F, INZILLO V, and QUINTANA A A. Exploiting frame aggregation and weighted round robin with beamforming smart antennas for directional MAC in MANET environments[J]. Ad Hoc Networks, 2019, 89: 186–203. doi: 10.1016/j.adhoc.2019.03.011
    [16] BUTLER J L, BUTLER A L, and BUTLER S C. The modal projector[J]. The Journal of the Acoustical Society of America, 2011, 129(4): 1881–1889. doi: 10.1121/1.3559684
    [17] 温梦华. 水下定向无线传感器网络数据链路层与网络层协议研究[D]. [硕士论文], 哈尔滨工程大学, 2020.

    WEN Menghua. Research on data link layer protocols and network layer protocols for underwater directional wireless sensor networks[D]. [Master dissertation], Harbin Engineering University, 2020.
    [18] 刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2010: 5–6.

    LIU Bosheng and LEI Jiayu. Principles of Underwater Acoustics[M]. Harbin Engineering University Press, 2rd, 2010: 5–6.
    [19] ZHAO Chen, QIAO Gang, ZHOU Feng, et al. Underwater localisation correction method for drifting anchor nodes with an extra floating anchor node[J]. IET Radar, Sonar & Navigation, 2020, 14(10): 1494–1501. doi: 10.1049/iet-rsn.2020.0117
    [20] PENG Zheng, ZHOU Zhong, CUI Junhong, et al. Aqua-Net: An underwater sensor network architecture: Design, implementation, and initial testing[C]. OCEANS 2009, Biloxi, United States, 2009.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  314
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回