高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双对数谱和卷积网络的船舶辐射噪声分类

徐源超 蔡志明 孔晓鹏

徐源超, 蔡志明, 孔晓鹏. 基于双对数谱和卷积网络的船舶辐射噪声分类[J]. 电子与信息学报, 2022, 44(6): 1947-1955. doi: 10.11999/JEIT211407
引用本文: 徐源超, 蔡志明, 孔晓鹏. 基于双对数谱和卷积网络的船舶辐射噪声分类[J]. 电子与信息学报, 2022, 44(6): 1947-1955. doi: 10.11999/JEIT211407
XU Yuanchao, CAI Zhiming, KONG Xiaopeng. Classification of Ship Radiated Noise Based on Bi-Logarithmic Scale Spectrum and Convolutional Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1947-1955. doi: 10.11999/JEIT211407
Citation: XU Yuanchao, CAI Zhiming, KONG Xiaopeng. Classification of Ship Radiated Noise Based on Bi-Logarithmic Scale Spectrum and Convolutional Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1947-1955. doi: 10.11999/JEIT211407

基于双对数谱和卷积网络的船舶辐射噪声分类

doi: 10.11999/JEIT211407
详细信息
    作者简介:

    徐源超:男,1994年生,博士生,研究方向为水声目标识别

    蔡志明:男,1962年生,教授,研究方向为水声信号与信息处理

    孔晓鹏:男,1987年生,讲师,研究方向为水声目标识别与非线性声学

    通讯作者:

    徐源超 xycwshr@126.com

  • 中图分类号: TN911.7; TP181

Classification of Ship Radiated Noise Based on Bi-Logarithmic Scale Spectrum and Convolutional Network

  • 摘要: 卷积层平移等变性与线性谱不适配,卷积网络对高维特征的长距离依赖建模能力不足。该文提出一种双对数谱特征用于船舶辐射噪声分类。双对数谱通过重新排列对数谱频点,保证高频端分辨率的同时,规避使用太深的卷积网络。利用双对数谱各行表征同一目标的先验知识,构建卷积网络和目标函数。DeepShip数据集上的试验结果表明,特征维数相同情况下,提出的算法分类正确率比以线性谱为输入的卷积网络提高2.4%以上。
  • 图  1  工况变化时,同源特征在线性和对数频率下的表现

    图  2  线性频率坐标下同源特征激活神经元不同

    图  3  双对数谱处理流程

    图  4  集成卷积网络(ACNN)结构

    图  5  卷积网络第1层的最大输出

    图  6  惩罚系数对损失函数的影响

    表  1  DeepShip 数据集样本统计

    类别记录数样本数
    货轮1099580
    客轮19111544
    油轮24011048
    拖船6910112
    合计60942284
    下载: 导出CSV

    表  2  ACNN 的网络结构参数

    层号参数
    输入$1 \times I \times J$维
    1Conv2d(32, 1×5)
    2Conv2d+MaxPool2d(64, 1×3), 1×2
    3Conv2d+MaxPool2d(64, 1×3), 1×2
    4Conv2d+MaxPool2d(64, 1×3), 1×2
    5Conv2d+MaxPool2d(64, 1×3), 1×2
    6Conv2d+MaxPool2d(128, 1×3), 1×2
    变形为$ 4J \times I $维
    7Conv1d(256, 1)
    8Conv1d(64, 1)
    9Conv1d+AvgPool1d(4, 1), $I$
    下载: 导出CSV

    表  3  对照组 CNN 结构参数

    网络输入维数卷积核数
    CNN1d25632-64-64-64-64-128
    102416-32-64-64-64-64-128
    20488-16-32-64-64-64-64-128
    CNN2d4×25632-64-64-64-64-128
    8×256
    全连接层均为1024-256-64-4
    下载: 导出CSV

    表  4  分类正确率

    网络特征维数正确率(%)
    CNN1d线性谱25663.62
    102464.70
    204864.60
    对数谱25665.02
    102466.25
    204865.31
    CNN2d双对数谱4×25666.07
    ACNN66.86
    ACNN+约束67.11
    CNN2d8×25666.35
    ACNN67.32
    ACNN+约束67.47
    下载: 导出CSV
  • [1] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [2] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [3] 王念滨, 何鸣, 王红滨, 等. 适用于水下目标识别的快速降维卷积模型[J]. 哈尔滨工程大学学报, 2019, 40(7): 1327–1333. doi: 10.11990/jheu.201805113

    WANG Nianbin, HE Ming, WANG Hongbin, et al. A fast reduced-dimension convolution model for underwater target recognition[J]. Journal of Harbin Engineering University, 2019, 40(7): 1327–1333. doi: 10.11990/jheu.201805113
    [4] SHEN Sheng, YANG Honghui, LI Junhao, et al. Auditory inspired convolutional neural networks for ship type classification with raw hydrophone data[J]. Entropy, 2018, 20(12): 990. doi: 10.3390/e20120990
    [5] HU Gang, WANG Kejun, PENG Yuan, et al. Deep learning methods for underwater target feature extraction and recognition[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1214301. doi: 10.1155/2018/1214301
    [6] LI Junhao and YANG Honghui. The underwater acoustic target timbre perception and recognition based on the auditory inspired deep convolutional neural network[J]. Applied Acoustics, 2021, 182: 108210. doi: 10.1016/j.apacoust.2021.108210
    [7] CHEN Yuechao and SHANG Jintao. Underwater target recognition method based on convolution autoencoder[C]. 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 2019: 1–5.
    [8] 王念滨, 何鸣, 王红滨, 等. 基于卷积神经网络的水下目标特征提取方法[J]. 系统工程与电子技术, 2018, 40(6): 1197–1203. doi: 10.3969/j.issn.1001-506x.2018.06.02

    WANG Nianbin, HE Ming, WANG Hongbin, et al. Underwater target feature extraction method based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(6): 1197–1203. doi: 10.3969/j.issn.1001-506x.2018.06.02
    [9] CHEN Jie, HAN Bing, MA Xufeng, et al. Underwater target recognition based on multi-decision LOFAR spectrum enhancement: A deep-learning approach[J]. Future Internet, 2021, 13(10): 265. doi: 10.3390/FI13100265
    [10] ZHANG Qi, DA Lianglong, ZHANG Yanhou, et al. Integrated neural networks based on feature fusion for underwater target recognition[J]. Applied Acoustics, 2021, 182: 108261. doi: 10.1016/J.APACOUST.2021.108261
    [11] GOODFELLOW I, BENGIO Y, COURVILLE A, 赵申剑, 黎彧君, 符天凡, 等译. 深度学习[M]. 北京: 人民邮电出版社, 2017: 205–207.

    GOODFELLOW I, BENGIO Y, COURVILLE A, ZHAO Shenjian, LI Yujun, FU Tianfan, et al. translation. Deep Learning[M]. Beijing: Posts & Telecommunications Press, 2017: 205–207.
    [12] IRFAN M, ZHENG Jiangbin, ALI S, et al. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification[J]. Expert Systems with Applications, 2021, 183: 115270. doi: 10.1016/J.ESWA.2021.115270
    [13] SCHÖRKHUBER C and KLAPURI A. Constant-Q transform toolbox for music processing[C]. The 7th Sound and Music Computing Conference, Barcelona, Spain, 2010.
    [14] LUO Wenjie, LI Yujia, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4905–4913.
    [15] UMESH S, COHEN L, and NELSON D. Fitting the Mel scale[C]. Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, USA, 1999: 217–220.
    [16] 徐源超, 蔡志明. 水声目标分类算法性能评估[J]. 哈尔滨工程大学学报, 2020, 41(10): 1559–1565. doi: 10.11990/jheu.202007114

    XU Yuanchao and CAI Zhiming. Performance evaluation on the algorithm of underwater acoustic target classification[J]. Journal of Harbin Engineering University, 2020, 41(10): 1559–1565. doi: 10.11990/jheu.202007114
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  919
  • HTML全文浏览量:  437
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-03-31
  • 录用日期:  2022-04-02
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回