高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫星网络路由技术现状及展望

倪少杰 岳洋 左勇 刘文祥 肖伟 叶小舟

倪少杰, 岳洋, 左勇, 刘文祥, 肖伟, 叶小舟. 卫星网络路由技术现状及展望[J]. 电子与信息学报, 2023, 45(2): 383-395. doi: 10.11999/JEIT211393
引用本文: 倪少杰, 岳洋, 左勇, 刘文祥, 肖伟, 叶小舟. 卫星网络路由技术现状及展望[J]. 电子与信息学报, 2023, 45(2): 383-395. doi: 10.11999/JEIT211393
NI Shaojie, YUE Yang, ZUO Yong, LIU Wenxiang, XIAO Wei, YE Xiaozhou. The Status Quo and Prospect of Satellite Network Routing Technology[J]. Journal of Electronics & Information Technology, 2023, 45(2): 383-395. doi: 10.11999/JEIT211393
Citation: NI Shaojie, YUE Yang, ZUO Yong, LIU Wenxiang, XIAO Wei, YE Xiaozhou. The Status Quo and Prospect of Satellite Network Routing Technology[J]. Journal of Electronics & Information Technology, 2023, 45(2): 383-395. doi: 10.11999/JEIT211393

卫星网络路由技术现状及展望

doi: 10.11999/JEIT211393
基金项目: 国家自然科学基金(U20A20193)
详细信息
    作者简介:

    倪少杰:男,研究员,硕士生导师,研究方向为星基导航与定位技术

    岳洋:男,硕士生,研究方向为卫星互联网路由技术

    左勇:男,副研究员,博士,研究方向为卫星通信、物联网、导航与通信融合技术

    刘文祥:男,副研究员,博士,研究方向为星基导航与定位技术

    肖伟:男,讲师,博士,研究方向为星基导航与定位技术

    叶小舟:男,博士,研究方向为星基导航与定位技术

    通讯作者:

    岳洋 727449519@qq.com

  • 中图分类号: TN927.2

The Status Quo and Prospect of Satellite Network Routing Technology

Funds: The National Natural Science Foundation of China (U20A20193)
  • 摘要: 与地面固定通信网络不同,卫星网络的节点高度动态性、有限的星上处理能力和网络拓扑周期性变化的特点给卫星互联网的路由协议与算法设计带来了新的挑战。该文系统梳理了学术界针对卫星网络所提出的路由技术,提出了卫星路由技术未来的发展方向。首先介绍了卫星网络架构和目前在卫星通信系统上应用的主要路由协议,并且简要介绍了卫星光通信网络的路由问题;其次,根据卫星节点的管理方式以及路由表生成方式将路由算法分类为集中式卫星路由、分布式卫星路由以及混合式卫星路由,详细介绍了各类卫星路由方法的代表性成果并总结其优化目标和适用场景;接着,总结了不同卫星网络场景和网络需求下如何选择合适的卫星路由算法;最后,阐述目前卫星路由技术面临的挑战以及未来的发展趋势,并在附录中介绍了当前主流的卫星网络仿真平台。
  • 图  1  卫星通信系统架构

    表  1  卫星网络路由协议

    卫星网络协议
    体系架构
    主要路由协议路由协议特点与评价
    IP体系架构内部网关协议:
      (1)路由信息协议RIP;
      (2)开放最短路径优先协议OSPF;
      (3)中间系统到中间系统协议IS-IS;
      (4)内部网关路由协议IGRP;
      (5)增强型内部网关路由协议EIGRP。
    外部网关协议:
      边界网关协议BGP。
    优点:
      (1)IP路由协议成熟稳定,可靠性高;
      (2)采用IP路由协议可以很方便与地面网络互联;
      (3)在卫星网络中实现组播较容易。
    不足:
      (1)IP协议仅提供“尽力而为”的服务,不能保证网络的服务质量
      (Quality of Service, QoS);
      (2)当网络结构过于复杂时,IP路由表的维护与更新较为困难。
    CCSDS体系架构(1)空间分组协议SPP;
    (2)空间通信协议规范-网络协议SCPS-NP。
    优点:
      (1)协议可应用于多种信道环境;
      (2)协议报文可随业务不同而改变首部结构,以达到最优的比特效率。
    不足:
      不支持与IP协议的互操作。如果要实现与IP协议的互联则需要转换
      协议首部。
    DTN系统架构单副本路由协议:
      (1) direct transmission协议;
      (2) seek and focus协议。
    多副本路由协议:
      (1) epidemic协议;
      (2) PROPHET协议;
      (3) MaxProp协议;
      (4) spray and wait协议。
    优点:
      (1)单副本路由协议信令开销低,网络资源利用率高;
      (2)多副本路由协议交付延迟低,可靠性高。
    不足:
      (1)单副本路由协议交付延迟高,可靠性较差;
      (2)多副本路由协议会占用大量的网络资源,网络负担较重。
    NDN系统架构(1)针对命名数据网络的开放最短路径优先协议OSPFN;
    (2)针对命名数据网络的双层路由协议TRPN;
    (3)命名数据链路状态路由协议NLSR。
    优点:
      (1)面向内容的路由机制能够避免陷入路由环路;
      (2)NDN路由只需要在本地处理转发失败的数据包,信令开销更小;
      (3)NDN路由能够主动调节数据包转发速率,从而避免网络拥塞。
    不足:
      相比IP路由要消耗更多的星上存储资源。
    下载: 导出CSV

    表  2  本文所提路由算法的优化目标、性能考虑以及适用场景总结

    路由
    策略
    具体算法优化目标端到端
    时延
    丢包
    吞吐
    链路
    利用率
    适用场景
    集中式FD[29]最短路径小型星座、不考虑星间转交时的带宽问题
    APRS[30]降低ISL切换频率避免拥塞由LEO, MEO卫星构成的IP over ATM网络
    MPQR[32]基于遗传算法和模拟退火的QoS优化LEO极轨星座
    QoSRP- MA[33]基于移动代理的QoS优化LEO斜轨星座,且假设不会发生链路失效和星间转交
    CEMR[35]基于多路径的负载均衡LEO极轨星座
    分布式LBRP-MA[39]基于移动代理的负载均衡
    考虑南北半球流量分布不均衡的LEO卫星IP网络
    DORA[40]基于多路径的负载均衡针对时延敏感性业务流量在LEO卫星网络的负载均衡
    QER[41]基于节点剩余能量的负载均衡考虑卫星节点工作寿命为有限的LEO卫星网络
    PAR[42]基于链路历史利用率的拥塞避免考虑反向缝两侧东、西半球卫星运动方向相反的LEO极轨星座
    LBRA-SR[43]基于流量密度区域划分的负载均衡考虑地面信关站地理分布不均匀的LEO星座
    ELMDR[44]基于机器学习的负载均衡考虑全球人口分布不均匀的LEO星座
    HLBR[45]基于拥塞预测的负载均衡考虑全球通信设备分布不均匀的LEO极轨星座
    SOR-MSG[46]基于马尔可夫空时图的QoS优化针对多种流量业务的差异化、不均匀QoS需求的LEO星座
    DSRA-MCIO[47]基于网络拓扑的抗毁性仅适用于巨型LEO斜轨星座
    混合式WSDRA[49]基于半分布式决策的最短路径LEO极轨星座
    GURA[50]基于全局和局部策略结合来降低计算开销星上计算与处理能力有限的LEO网络
    HGLBRS[51]基于全局和局部策略结合的负载均衡基于物联网流量随时间变化剧烈的LEO星座
    FRA-SDNORS[52]基于软件定义网络的负载均衡基于SDN和操作相应空间(OSR)技术的卫星网络
    下载: 导出CSV

    表  3  卫星网络仿真软件介绍

    软件名称编程语言是否开源官方网址优点缺点
    STK不开源https://www.agi.com/products/stk具有强大的卫星星座分析和可视化能力,数据报告全面无法进行卫星星座的网络级仿真
    NS-2C++,
    Otcl
    开源https://www.isi.edu/nsnam/ns/协议库和扩展工具丰富,说明文档全面,易于学习创建新协议比较困难,使用较繁琐,目前已经停止更新
    NS-3C++开源https://www.nsnam.org/支持Python接口,编程复杂度较低,用户自定义模型容易目前并不完善,支持的协议和模型较少
    QualNetParsec不开源https://networksimulationtools.com/qualnet-network-simulator/仿真速度快灵活性和可扩展性较差
    OPNETC++不开源https://opnetprojects.com/用户手册全面,拥有良好的图形编程界面,软件使用较为方便对大规模网络的仿真能力较弱
    OMNeT++C++开源https://omnetpp.org/灵活性和可扩展性好,可供用户学习的资料多对于移动性建模的支持较差
    J-SIMJava开源https://www.physiome.org/jsim/灵活性和可扩展性好,网络模型定义方便,代码量大幅减少缺少大型网络仿真的指导文档,对于大规模网络的仿真能力较差
    JiST/
    SWANS
    Java开源https://networksimulationtools.com/jist-swans-network-simulator/非常高效,仿真速度和内存消耗小,具有良好的跨平台性和可移植性易用性稍差
    GTNetSC++开源https://griley.ece.gatech.edu/MANIACS/GTNetS/很好地支持大型网络设计,具备良好的可扩展性易用性较差
    SSFNetJava开源http://www.ssfnet.org/homePage.html内存消耗小,可支持节点数量多缺少用户扩展工具支持,仿真结果不易分析
    MininetPython开源http://mininet.org/具有良好的可扩展性和可移植性,提供Python接口,支持多人协同开发仿真结果准确度不够高且难以复现
    EstiNet不开源https://www.estinet.com/ns/具备良好的可扩展性和准确性,仿真精度高且易复现不开源,成本较高
    下载: 导出CSV
  • [1] JAEOOK L and SUN K. Satellite over satellite (SOS) network: A novel architecture for satellite network[C]. IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000: 315–321.
    [2] 卢勇, 赵有健, 孙富春, 等. 卫星网络路由技术[J]. 软件学报, 2014, 25(5): 1085–1100. doi: 10.13328/j.cnki.jos.004581

    LU Yong, ZHAO Youjian, Sun Fuchun, et al. Routing techniques on satellite networks[J]. Journal of Software, 2014, 25(5): 1085–1100. doi: 10.13328/j.cnki.jos.004581
    [3] 朱立东, 张勇, 贾高一. 卫星互联网路由技术现状及展望[J]. 通信学报, 2021, 42(8): 33–42. doi: 10.11959/j.issn.1000-436x.2021166

    ZHU Lidong, ZHANG Yong, and JIA Gaoyi. Current status and future prospects of routing technologies for satellite Internet[J]. Journal on Communications, 2021, 42(8): 33–42. doi: 10.11959/j.issn.1000-436x.2021166
    [4] ALAGOZ F, KORCAK O, and JAMALIPOUR A. Exploring the routing strategies in next-generation satellite networks[J]. IEEE Wireless Communications, 2007, 14(3): 79–88. doi: 10.1109/MWC.2007.386616
    [5] 李仁见, 陈立前, 王戟. IP及其路由技术在星载计算机中的应用[J]. 计算机工程, 2007, 33(14): 110–112. doi: 10.3969/j.issn.1000-3428.2007.14.038

    LI Renjian, CHEN Liqian, and WANG Ji. Application of IP protocol and its routing technology in onboard computer[J]. Computer Engineering, 2007, 33(14): 110–112. doi: 10.3969/j.issn.1000-3428.2007.14.038
    [6] DENG Dexin, ZHENG Zengwei, and HUO Meimei. A survey: The progress of routing technology in satellite communication networks[C]. The 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, 2011: 286–291.
    [7] SPYROPOULOS T, PSOUNIS K, and RAGHAVENDRA C S. Efficient routing in intermittently connected mobile networks: The single-copy case[J]. IEEE/ACM Transactions on Networking, 2008, 16(1): 63–76. doi: 10.1109/TNET.2007.897962
    [8] WANG Hezhe, WANG Huiqiang, TAN Jing, et al. A delay tolerant network routing policy based on optimized control information generation method[J]. IEEE Access, 2018, 6: 51791–51803. doi: 10.1109/ACCESS.2018.2869380
    [9] XI Yong, CHUAH M, and CHANG K. Performance evaluation of a power management scheme for disruption tolerant network[J]. Mobile Networks and Applications, 2007, 12(5/6): 370–380. doi: 10.1007/s11036-008-0046-4
    [10] BURGESS J, GALLAGHER B, JENSEN D, et al. MaxProp: Routing for vehicle-based disruption-tolerant networks[C]. IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, Barcelona, Spain, 2006: 1–11.
    [11] SPYROPOULOS T, PSOUNIS K, and RAGHAVENDRA C S. Spray and wait: An efficient routing scheme for intermittently connected mobile networks[C]. The 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, Philadelphia, USA, 2005: 252–259.
    [12] DALY E M and HAAHR M. Social network analysis for routing in disconnected delay-tolerant MANETs[C]. The 8th ACM International Symposium on Mobile ad Hoc Networking and Computing, Montreal, Canada, 2007: 32–40.
    [13] SAXENA D, RAYCHOUDHURY V, SURI N, et al. Named data networking: A survey[J]. Computer Science Review, 2016, 19: 15–55. doi: 10.1016/j.cosrev.2016.01.001
    [14] CHEN Qingxia, XIE Renchao, YU F R, et al. Transport control strategies in named data networking: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2052–2083. doi: 10.1109/COMST.2016.2528164
    [15] HOQUE A K M M, AMIN S O, ALYYAN A, et al. NLSR: Named-data link state routing protocol[C]. The 3rd ACM SIGCOMM Workshop on Information-Centric Networking, Hong Kong, China, 2013: 15–20.
    [16] RINALDI F, MAATTANEN H L, TORSNER J, et al. Non-terrestrial networks in 5G & beyond: A survey[J]. IEEE Access, 2020, 8: 165178–165200. doi: 10.1109/ACCESS.2020.3022981
    [17] KAUSHAL H and KADDOUM G. Optical communication in space: Challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57–96. doi: 10.1109/COMST.2016.2603518
    [18] WEN Guoli, ZHANG Qi, WANG Houtian, et al. An ant colony algorithm based on cross-layer design for routing and wavelength assignment in optical satellite networks[J]. China Communications, 2017, 14(8): 63–75. doi: 10.1109/CC.2017.8014348
    [19] SUN Xue and CAO Suzhi. A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks[J]. Journal of Lightwave Technology, 2020, 38(8): 2106–2113. doi: 10.1109/JLT.2020.2965185
    [20] HSU C C, CHO H J, and FANG S C. Solving routing and wavelength assignment problem with maximum edge-disjoint paths[J]. Journal of Industrial and Management Optimization, 2017, 13(2): 1065–1084. doi: 10.3934/jimo.2016062
    [21] BHANJA U and MISHRA D. Quality of service aware fuzzy dynamic routing and wavelength assignment technique in all optical networks[J]. Photonic Network Communications, 2017, 34(2): 155–169. doi: 10.1007/s11107-017-0689-9
    [22] QIN Panke, WU Jingru, LI Xudong, et al. Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks[J]. Physica A:Statistical Mechanics and its Applications, 2018, 490: 1454–1460. doi: 10.1016/j.physa.2017.08.112
    [23] 杨乾远, 孙晖, 马拥华, 等. 5G基站前传和中传的无线光通信方案设计[J]. 光通信技术, 2019, 43(9): 23–26. doi: 10.13921/j.cnki.issn1002-5561.2019.09.005

    YANG Qianyuan, SUN Hui, MA Yonghua, et al. Design of free space optical communication scheme for forward and intermediate transmission of 5G base station[J]. Optical Communication Technology, 2019, 43(9): 23–26. doi: 10.13921/j.cnki.issn1002-5561.2019.09.005
    [24] MARTÍN, TROIA S, HERNÁNDEZ J A, et al. Machine learning-based routing and wavelength assignment in software-defined optical networks[J]. IEEE Transactions on Network and Service Management, 2019, 16(3): 871–883. doi: 10.1109/TNSM.2019.2927867
    [25] 刘晔祺. 卫星动态光网络的路由和资源管理方法研究[D]. [博士论文], 北京邮电大学, 2021.

    LIU Yeqi. Research on routing and resource management of dynamic optical satellite networks[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2021.
    [26] 文国莉. 空间光网络路由与资源管理技术研究[D]. [博士论文], 北京邮电大学, 2018.

    WEN Guoli. Research on routing and resource management technology for space optical networks[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2018.
    [27] MAURYA R K, THANGARAJ J, and PRIYE V. Dynamic routing and wavelength assignment using cost based heuristics in WDM optical networks[J]. Wireless Personal Communications, 2020, 115(2): 971–992. doi: 10.1007/s11277-020-07607-5
    [28] CHANG H S, KIM B W, LEE C G, et al. FSA-based link assignment and routing in low-earth orbit satellite networks[J]. IEEE Transactions on Vehicular Technology, 1998, 47(3): 1037–1048. doi: 10.1109/25.704858
    [29] GRAGOPOULOS I, PAPAPETROU E, and PAVLIDOU F N. Performance study of adaptive routing algorithms for LEO satellite constellations under Self-Similar and Poisson traffic[J]. Space Communications, 2000, 16(1): 15–22.
    [30] CHEN Jing and JAMALIPOUR A. An adaptive path routing scheme for satellite IP networks[J]. International Journal of Communication Systems, 2003, 16(1): 5–21. doi: 10.1002/dac.577
    [31] ZHA Peng, LONG Chengnian, WU Jing, et al. Satellite lifetime predicted greedy perimeter stateless routing protocol for LEO satellite network[C]. The 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020: 5102–5107.
    [32] RAO Yuan and WANG Ruchuan. Performance of QoS routing using genetic algorithm for Polar-orbit LEO satellite networks[J]. AEU-International Journal of Electronics and Communications, 2011, 65(6): 530–538. doi: 10.1016/j.aeue.2010.08.008
    [33] RAO Yuan and WANG Ruchuan. QoS routing based on mobile agent for LEO satellite IP networks[J]. The Journal of China Universities of Posts and Telecommunications, 2009, 16(6): 57–63. doi: 10.1016/S1005-8885(08)60289-7
    [34] HUI Xu, FEI Huang, and WU Shiqi. A distributed QoS routing based on ant algorithm for LEO satellite network[J]. Journal of Electronics (China) , 2007, 24(6): 765–771. doi: 10.1007/s11767-006-0040-6
    [35] BAI Jianjun, LU Xicheng, LU Zexin, et al. Compact explicit multi-path routing for LEO satellite networks[C]. The HPSR 2005 Workshop on High Performance Switching and Routing, Hong Kong, China, 2005: 386–390.
    [36] FRANCK L and MARAL G. Static and adaptive routing in ISL networks from a constellation perspective[J]. International Journal of Satellite Communications, 2002, 20(6): 455–475. doi: 10.1002/sat.736
    [37] EKICI E, AKYILDIZ I F, and BENDER M D. A distributed routing algorithm for datagram traffic in LEO satellite networks[J]. IEEE/ACM Transactions on Networking, 2001, 9(2): 137–147. doi: 10.1109/90.917071
    [38] TALEB T, MASHIMO D, JAMALIPOUR A, et al. Explicit load balancing technique for NGEO satellite IP networks with on-board processing capabilities[J]. IEEE/ACM Transactions on Networking, 2009, 17(1): 281–293. doi: 10.1109/TNET.2008.918084
    [39] RAO Yuan, WANG Ruchuan, and XU Xiaolong. Load balancing routing for single-layered satellite networks[J]. The Journal of China Universities of Posts and Telecommunications, 2010, 17(2): 92–99. doi: 10.1016/S1005-8885(09)60453-2
    [40] LIU Liang, ZHANG Tao, and LU Yong. A novel adaptive routing algorithm for delay-sensitive service in multihop LEO satellite network[J]. KSII Transactions on Internet and Information Systems, 2016, 10(8): 3551–3567. doi: 10.3837/tiis.2016.08.007
    [41] GAO Yang, ZHANG Yong, LI Kun, et al. Joint multi-QoS and energy saving routing for LEO satellite network[J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26(3): 25–34. doi: 10.19682/j.cnki.1005-8885.2019.0015
    [42] KORÇAK Ö and ALAGÖZ F. Priority-based adaptive shortest path routing in IP over LEO satellite networks[C]. The Proc of 23rd AIAA International Communications Satelllite Systems Conference, Monterey, USA, 2005: 1–9.
    [43] LIU Wei, TAO Ying, and LIU Liang. Load-balancing routing algorithm based on segment routing for traffic return in LEO satellite networks[J]. IEEE Access, 2019, 7: 112044–112053. doi: 10.1109/ACCESS.2019.2934932
    [44] NA Zhenyu, PAN Zheng, LIU Xin, et al. Distributed routing strategy based on machine learning for LEO satellite network[J]. Wireless Communications and Mobile Computing, 2018, 2018: 3026405. doi: 10.1155/2018/3026405
    [45] LIU Peilong, CHEN Hongyu, WEI Songjie, et al. Hybrid-traffic-detour based load balancing for onboard routing in LEO satellite networks[J]. China Communications, 2018, 15(6): 28–41. doi: 10.1109/CC.2018.8398222
    [46] KARAPANTAZIS S, PAPAPETROU E, and PAVLIDOU F N. Multiservice on-demand routing in LEO satellite networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(1): 107–112. doi: 10.1109/TWC.2009.080334
    [47] DAI Cuiqin, LIAO Guangyan, and CHEN Qianbin. Service-oriented routing with Markov space-time graph in low earth orbit satellite networks[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(7): e4072. doi: 10.1002/ett.4072
    [48] QI Xiaoxin, ZHANG Bing, and QIU Zhiliang. A distributed survivable routing algorithm for mega-constellations with inclined orbits[J]. IEEE Access, 2020, 8: 219199–219213. doi: 10.1109/ACCESS.2020.3041346
    [49] GUO Zhe and YAN Zheng. A weighted semi-distributed routing algorithm for LEO satellite networks[J]. Journal of Network and Computer Applications, 2015, 58: 1–11. doi: 10.1016/j.jnca.2015.08.015
    [50] ZHANG Yi, ZHOU Quan, LI Jun, et al. The generation and update algorithm of routing table in satellite network[C]. 2015 IEEE International Conference on Communication Problem-Solving (ICCP), Guilin, China, 2015: 619–622.
    [51] LIU Ziluan, LI Jiangsheng, WANG Yanru, et al. HGL: A hybrid global-local load balancing routing scheme for the Internet of Things through satellite networks[J]. International Journal of Distributed Sensor Networks, 2017, 13(3): 1–16. doi: 10.1177/1550147717692586
    [52] JIANG Lei, FENG Jing, SHEN Ye, et al. Fast recovery routing algorithm for software defined network based operationally responsive space satellite networks[J]. KSII Transactions on Internet and Information Systems, 2016, 10(7): 2936–2951. doi: 10.3837/tiis.2016.07.004
    [53] DAI Shiyue, RUI Lanlan, CHEN Shiyou, et al. A distributed congestion control routing protocol based on traffic classification in LEO satellite networks[C]. The 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 2021: 523–529.
    [54] LIANG Yonglin and QIU Lirong. Network traffic prediction based on SVR improved by chaos theory and ant colony optimization[J]. International Journal of Future Generation Communication and Networking, 2015, 8(1): 69–78. doi: 10.14257/ijfgcn.2015.8.1.08
    [55] 胡浪. LEO卫星网络中基于流量预测的多代理负载均衡与OoS路由研究[D]. [硕士论文], 北京邮电大学, 2019

    HU Lang. Multi-agent load balancing and QoS routing based on traffic prediction[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
    [56] 张连城. 卫星网络路由协议研究与实现[D]. [硕士论文], 西安电子科技大学, 2017.

    ZHANG Liancheng. Research and implementation of satellite network routing protocol[D]. [Master dissertation], Xidian University, 2017.
    [57] 秦嘉雯. 基于故障检测的卫星网络抗毁路由研究及验证[D]. [硕士论文], 北京邮电大学, 2020.

    QIN Jiawen. Research and verification of satellite network anti-destructive routing based on fault detection[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2020.
    [58] 王慧文. 基于深度强化学习的低轨卫星路由策略研究[D]. [硕士论文], 北京邮电大学, 2020.

    WANG Huiwen. Routing strategy for LEO satellite network based on deep reinforcement learning[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2020.
    [59] 罗泽耀. 天地一体化网络下基于机器学习的路由技术研究[D]. [硕士论文], 电子科技大学, 2021.

    LUO Zeyao. Research of routing technology based on machine learning in integrated satellite-terrestrial information network[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [60] AKYILDIZ I F, EKICI E, and BENDER M D. MLSR: A novel routing algorithm for multilayered satellite IP networks[J]. IEEE/ACM Transactions on Networking, 2002, 10(3): 411–424. doi: 10.1109/TNET.2002.1012371
    [61] CHEN Chao and EKICI E. A routing protocol for hierarchical LEO/MEO satellite IP networks[J]. Wireless Networks, 2005, 11(4): 507–521. doi: 10.1007/s11276-005-1772-1
    [62] BAYHAN S, GÜR G, and ALAGÖZ F. Performance of delay-sensitive traffic in multi-layered satellite IP networks with on-board processing capability[J]. International Journal of Communication Systems, 2007, 20(12): 1367–1389. doi: 10.1002/dac.874
    [63] LIU Heyu and SUN Fuchun. Routing for predictable multi-layered satellite networks[J]. Science China Information Sciences, 2013, 56(11): 1–18. doi: 10.1007/s11432-013-5014-3
    [64] 周云晖. 卫星网络QoS路由协议及其优化理论研究[D]. [博士论文], 清华大学, 2007.

    ZHOU Yunhui. A novel QoS routing protocol for satellite networks and its optimization[D]. [Ph. D. dissertation], Tsinghua University, 2007.
    [65] ZHOU Yunhui, SUN Fuchun, and ZHANG Bo. A novel QoS routing protocol for LEO and MEO satellite networks[J]. International Journal of Satellite Communications and Networking, 2007, 25(6): 603–617. doi: 10.1002/sat.892
    [66] BERTAUX L, MEDJIAH S, BERTHOU P, et al. Software defined networking and virtualization for broadband satellite networks[J]. IEEE Communications Magazine, 2015, 53(3): 54–60. doi: 10.1109/MCOM.2015.7060482
    [67] XU Shuang, WANG Xingwei, and HUANG Min. Software-defined next-generation satellite networks: Architecture, challenges, and solutions[J]. IEEE Access, 2018, 6: 4027–4041. doi: 10.1109/ACCESS.2018.2793237
    [68] LI Taixin, ZHOU Huachun, LUO Hongbin, et al. SERvICE: A software defined framework for integrated space-terrestrial satellite communication[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 703–716. doi: 10.1109/TMC.2017.2732343
    [69] 刘莹莹. 基于SDN的卫星网络路由算法研究[D]. [硕士论文], 北京邮电大学, 2020.

    LIU Yingying. Research on satellite network routing algorithm based on SDN[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2020.
    [70] 杨林瑶, 韩双双, 王晓, 等. 网络系统实验平台: 发展现状及展望[J]. 自动化学报, 2019, 45(9): 1637–1654. doi: 10.16383/j.aas.c180728

    YANG Linyao, HAN Shuangshuang, WANG Xiao, et al. Computational experiment platforms for networks: The state of the art and prospect[J]. Acta Automatica Sinica, 2019, 45(9): 1637–1654. doi: 10.16383/j.aas.c180728
    [71] KASSING S, BHATTACHERJEE D, ÁGUAS A B, et al. Exploring the "Internet from space" with Hypatia[C]. The ACM Internet Measurement Conference, New York, USA, 2020: 214–229.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  2621
  • HTML全文浏览量:  2390
  • PDF下载量:  815
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-04-23
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回