[1] |
LI Weilin, LIAO Wenjing, and FANNJIANG A. Super-resolution limit of the ESPRIT algorithm[J]. IEEE Transactions on Information Theory, 2020, 66(7): 4593–4608. doi: 10.1109/TIT.2020.2974174
|
[2] |
XU Baoqing, ZHAO Yongbo, CHENG Zengfei, et al. A novel unitary PARAFAC method for DOD and DOA estimation in bistatic MIMO radar[J]. Signal Processing, 2017, 138: 273–279. doi: 10.1016/j.sigpro.2017.03.016
|
[3] |
XU Baoqing and ZHAO Yongbo. Transmit beamspace-based DOD and DOA estimation method for bistatic MIMO radar[J]. Signal Processing, 2019, 157: 88–96. doi: 10.1016/j.sigpro.2018.11.016
|
[4] |
HU Bin, SONG Zuxun, and ZHANG Linxi. Fast and efficient time-reversal imaging using space-frequency propagator method[J]. IEEE Transactions on Signal Processing, 2020, 68: 2077–2086. doi: 10.1109/TSP.2020.2981672
|
[5] |
AHMED T, ZHANG Xiaofei, and HASSAN W U. A higher-order propagator method for 2D-DOA estimation in massive MIMO systems[J]. IEEE Communications Letters, 2020, 24(3): 543–547. doi: 10.1109/LCOMM.2019.2960341
|
[6] |
FORSTER P, GINOLHAC G, and BOIZARD M. Derivation of the theoretical performance of a tensor MUSIC algorithm[J]. Signal Processing, 2016, 129: 97–105. doi: 10.1016/j.sigpro.2016.05.033
|
[7] |
HALAY N and TODROS K. MSE based optimization of the measure-transformed MUSIC algorithm[J]. Signal Processing, 2019, 160: 150–163. doi: 10.1016/j.sigpro.2019.01.025
|
[8] |
WONG K T and ZOLTOWSKI M D. Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(10): 1467–1474. doi: 10.1109/8.633852
|
[9] |
KHAN S and WONG K T. A six-component vector sensor comprising electrically Long dipoles and Large loops—To simultaneously estimate incident sources’ directions-of-arrival and polarizations[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6355–6363. doi: 10.1109/TAP.2020.2988980
|
[10] |
CHINTAGUNTA S and PONNUSAMY P. 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors[J]. Signal Processing, 2018, 147: 163–172. doi: 10.1016/j.sigpro.2018.01.025
|
[11] |
郑桂妹, 陈伯孝, 吴渤. 三正交分离式极化敏感阵列的波达方向估计[J]. 电子与信息学报, 2014, 36(5): 1088–1093. doi: 10.3724/SP.J.1146.2013.00967ZHENG Guimei, CHEN Baixiao, and WU Bo. DOA estimation with three orthogonally oriented and spatially spread polarization sensitive array[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1088–1093. doi: 10.3724/SP.J.1146.2013.00967
|
[12] |
YUAN Xin, WONG K T, XU Zixin, et al. Various compositions to form a triad of collocated dipoles/loops, for direction finding and polarization estimation[J]. IEEE Sensors Journal, 2012, 12(6): 1763–1771. doi: 10.1109/JSEN.2011.2179532
|
[13] |
COSTA M, RICHTER A, and KOIVUNEN V. DOA and polarization estimation for arbitrary array configurations[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2330–2343. doi: 10.1109/TSP.2012.2187519
|
[14] |
SHI Shuli, XU Yougen, ZHUANG Junpeng, et al. Tri-polarized sparse array design for mutual coupling reduction in direction finding and polarization estimation[J]. Electronics, 2019, 8(12): 1557. doi: 10.3390/electronics8121557
|
[15] |
KHAN S and WONG K T. Electrically long dipoles in a crossed pair for closed-form estimation of an incident source’s polarization[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(8): 5569–5581. doi: 10.1109/TAP.2019.2916581
|
[16] |
EL KORSO M N, BOYER R, RENAUX A, et al. Statistical resolution limit of the uniform linear cocentered orthogonal loop and dipole array[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 425–431. doi: 10.1109/TSP.2010.2083657
|
[17] |
张贤达. 矩阵分析与应用[M]. 2版. 北京: 清华大学出版社, 2013.ZHANG Xianda. Matrix Analysis and Applications[M]. 2nd ed. Beijing: Tsinghua University Press, 2013.
|
[18] |
张涛, 宋婷, 李晓明, 等. 弯曲阵面机载共形阵列雷达方向图与杂波相关性研究[J]. 电子与信息学报, 2021, 43(3): 572–579. doi: 10.11999/JEIT200572ZHANG Tao, SONG Ting, LI Xiaoming, et al. Research on the relation between the beampattern and clutter distribution of curved surface array for airborne conformal array radar[J]. Journal of Electronics &Information Technology, 2021, 43(3): 572–579. doi: 10.11999/JEIT200572
|
[19] |
LIU Chao, LI Chuan, and YANG Bo. Improved alternating projection algorithm for pattern synthesis with dual polarised conformal arrays[J]. IET Microwaves, Antennas & Propagation, 2020, 14(9): 891–896. doi: 10.1049/iet-map.2019.0941
|
[20] |
王布宏, 郭英, 王永良, 等. 共形天线阵列流形的建模方法[J]. 电子学报, 2009, 37(3): 481–484. doi: 10.3321/j.issn:0372-2112.2009.03.010WANG Buhong, GUO Ying, WANG Yongliang, et al. Array manifold modeling for conformal array antenna[J]. Acta Electronica Sinica, 2009, 37(3): 481–484. doi: 10.3321/j.issn:0372-2112.2009.03.010
|
[21] |
徐友根, 刘志文, 龚晓峰. 极化敏感阵列信号处理[M]. 北京: 北京理工大学出版社, 2013.XU Yougen, LIU Zhiwen, and GONG Xiaofeng. Polarization Sensitive Array Signal Processing[M]. Beijing: Beijing Institute of Technology Press, 2013.
|
[22] |
SHANG Fang, KISHI N, and HIROSE A. Degree of polarization-based data filter for fully polarimetric synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3767–3777. doi: 10.1109/TGRS.2018.2887102
|
[23] |
JIN K H and YE J C. Sparse and low-rank decomposition of a hankel structured matrix for impulse noise removal[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1448–1461. doi: 10.1109/TIP.2017.2771471
|
[24] |
TAN Jun and NIE Zaiping. Polarisation smoothing generalised MUSIC algorithm with PSA monostatic MIMO radar for low angle estimation[J]. Electronics Letters, 2018, 54(8): 527–529. doi: 10.1049/el.2017.4378
|