高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时空混合图卷积网络的机器人定位误差预测及补偿方法

廖昭洋 胡睿晗 周雪峰 徐智浩 瞿弘毅 谢海龙

廖昭洋, 胡睿晗, 周雪峰, 徐智浩, 瞿弘毅, 谢海龙. 基于时空混合图卷积网络的机器人定位误差预测及补偿方法[J]. 电子与信息学报, 2022, 44(5): 1539-1547. doi: 10.11999/JEIT211381
引用本文: 廖昭洋, 胡睿晗, 周雪峰, 徐智浩, 瞿弘毅, 谢海龙. 基于时空混合图卷积网络的机器人定位误差预测及补偿方法[J]. 电子与信息学报, 2022, 44(5): 1539-1547. doi: 10.11999/JEIT211381
LIAO Zhaoyang, HU Ruihan, ZHOU Xuefeng, XU Zhihao, QU Hongyi, XIE Hailong. Prediction and Compensation Method of Robot Positioning Error Based on Spatio-temporal Graph Convolution Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1539-1547. doi: 10.11999/JEIT211381
Citation: LIAO Zhaoyang, HU Ruihan, ZHOU Xuefeng, XU Zhihao, QU Hongyi, XIE Hailong. Prediction and Compensation Method of Robot Positioning Error Based on Spatio-temporal Graph Convolution Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1539-1547. doi: 10.11999/JEIT211381

基于时空混合图卷积网络的机器人定位误差预测及补偿方法

doi: 10.11999/JEIT211381
基金项目: 广东省基础与应用基础研究基金 (2021A1515110898),广东省重点领域研发计划(2020B090925001),广州市重点研发计划(202103020004),广东省科学院建设国内一流研究机构行动专项(2021GDASYL-20210103087)
详细信息
    作者简介:

    廖昭洋:男,1992年生,助理研究员,研究方向为机器人与数字化制造

    胡睿晗:男,1992年生,助理研究员,研究方向为人工智能与数字化制造

    周雪峰:男,1982年生,研究员,研究方向为机器人技术与智能制造

    徐智浩:男,1989年生,助理研究员,研究方向为人工智能与机器人控制

    瞿弘毅:男,1989年生,助理研究员,研究方向为机器人控制技术

    谢海龙:男,1993年生,博士生,研究方向为机器人制造技术

    通讯作者:

    胡睿晗 rh.hu@giim.ac.cn

  • 中图分类号: TP24

Prediction and Compensation Method of Robot Positioning Error Based on Spatio-temporal Graph Convolution Neural Network

Funds: Guangdong Basic and Applied Basic Research Foundation (2021A1515110898), Key Areas R&D Program of Guangdong Province (2020B090925001), Key R&D Program of Guangzhou City (202103020004), GDAS' Project of Science and Technology Development (2021GDASYL-20210103087)
  • 摘要: 工业机器人作为智能制造的重要载体,在大范围复杂任务中具有巨大潜力。但是,定位精度低且难以控制的问题阻碍了机器人在高精度任务的进一步推广。为了提升机器人作业精度,该文提出一种基于时空混合图卷积网络的机器人定位误差预测及补偿方法。首先通过设计图关系编码模块、时空混合特征解码模块,构建基于图卷积网络的机器人位姿误差预测模型;然后,针对传统迭代补偿方法中机器人逆解次数多导致效率低的问题,该文将定位误差补偿问题转化为优化问题,并利用遗传算法同时对位置和姿态进行误差补偿;最后,通过拉丁超立方抽样方法获得训练集,实现机器人定位误差预测模型的训练,并通过实验验证了定位误差预测的准确性以及补偿的效果。
  • 图  1  时空混合图卷积网络结构图

    图  2  机器人末端误差与末端执行器误差关系

    图  3  误差补偿与误差相互耦合的情况

    图  4  机器人定位精度测量平台

    图  5  机器人笛卡儿空间采样范围

    图  6  笛卡儿空间内LHS抽样结果

    图  7  时空混合图卷积网络和7层卷积网络训练过程对比

    图  8  时空混合图卷积网络的实际误差与预测误差值对比

    图  9  补偿前后机器人位姿误差结果

    表  1  7层卷积网络的网络配置

    层数1234567
    网络配置Conv1D
    (30, 3, relu)
    MaxPooling1D (2)Conv1D (1, 3, ReLU)MaxPooling1D (2)Dense
    (50)
    Dense
    (50)
    Dense
    (6)
    下载: 导出CSV

    表  2  7层卷积网络的网络配置

    模型误差
    时空图卷积网络0.0114
    7层卷积网络0.0526
    下载: 导出CSV
  • [1] CHEN Yubao. Integrated and intelligent manufacturing: Perspectives and enablers[J]. Engineering, 2017, 3(5): 588–595. doi: 10.1016/J.ENG.2017.04.009
    [2] ZHU Zerun, TANG Xiaowei, CHEN Chen, et al. High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends[J]. Chinese Journal of Aeronautics, 2022, 35(2): 22–46. doi: 10.1016/j.cja.2020.12.030
    [3] KIM S H, NAM E, HA T I, et al. Robotic machining: A review of recent progress[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(9): 1629–1642. doi: 10.1007/s12541-019-00187-w
    [4] GUO Yingjie, DONG Huiyue, WANG Guifeng, et al. Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools and Manufacture, 2016, 101: 102–110. doi: 10.1016/j.ijmachtools.2015.11.011
    [5] YE Congcong, YANG Jixiang, ZHAO Huan, et al. Task-dependent workpiece placement optimization for minimizing contour errors induced by the low posture-dependent stiffness of robotic milling[J]. International Journal of Mechanical Sciences, 2021, 205: 106601. doi: 10.1016/j.ijmecsci.2021.106601
    [6] NUBIOLA A and BONEV I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1): 236–245. doi: 10.1016/j.rcim.2012.06.004
    [7] HU J, HUA F, and TIAN W. Robot positioning error compensation method based on deep neural network[J]. Journal of Physis Coference Series, 2020, 1487: 012045.
    [8] YANG Xiangdong, WU Liao, LI Jinquan, et al. A minimal kinematic model for serial robot calibration using POE formula[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(3): 326–334. doi: 10.1016/j.rcim.2013.11.002
    [9] RENDERS J M, ROSSIGNOL E, BECQUET M, et al. Kinematic calibration and geometrical parameter identification for robots[J]. IEEE Transactions on Robotics and Automation, 1991, 7(6): 721–732. doi: 10.1109/70.105381
    [10] MA Le, BAZZOLI P, SAMMONS P M, et al. Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 153–167. doi: 10.1016/j.rcim.2017.09.006
    [11] ALICI G and SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory, 2005, 40(8): 879–906. doi: 10.1016/j.mechmachtheory.2004.12.012
    [12] NGUYEN H N, ZHOU Jian, and KANG H J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J]. Neurocomputing, 2015, 151: 996–1005. doi: 10.1016/j.neucom.2014.03.085
    [13] NGUYEN H N, LE P N, and KANG H J. A new calibration method for enhancing robot position accuracy by combining a robot model–based identification approach and an artificial neural network–based error compensation technique[J]. Advances in Mechanical Engineering, 2019, 11(1): 1–11. doi: 10.1177/1687814018822935
    [14] 王龙飞, 李旭, 张丽艳, 等. 工业机器人定位误差规律分析及基于ELM算法的精度补偿研究[J]. 机器人, 2018, 40(6): 843–851,859. doi: 10.13973/j.cnki.robot.170536

    WANG Longfei, LI Xu, ZHANG Liyan, et al. Analysis of the positioning error of industrial robots and accuracy compensation based on ELM algorithm[J]. Robot, 2018, 40(6): 843–851,859. doi: 10.13973/j.cnki.robot.170536
    [15] LI Bo, TIAN Wei, ZHANG Chufan, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2): 346–360. doi: 10.1016/j.cja.2021.03.027
    [16] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3): 42–48. doi: 10.3901/JME.2013.03.042

    ZHOU Wei, LIAO Wenhe, and TIAN Wei. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3): 42–48. doi: 10.3901/JME.2013.03.042
    [17] WANG Wei, TIAN Wei, LIAO Wenhe, et al. Error compensation of industrial robot based on deep belief network and error similarity[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102220. doi: 10.1016/j.rcim.2021.102220
    [18] HU Ruihan, HUANG Qijun, WANG Hao, et al. Monitor-based spiking recurrent network for the representation of complex dynamic patterns[J]. International Journal of Neural Systems, 2019, 29(8): 1950006. doi: 10.1142/S0129065719500060
    [19] SUN Peize, CAO Jinkun, JIANG Yi, et al. TransTrack: Multiple object tracking with transformer[J]. arXiv preprint arXiv: 2012.15460, 2020.
    [20] SHANG Chao, LIU Qinqing, TONG Qianqian, et al. Multi-view spectral graph convolution with consistent edge attention for molecular modeling[J]. Neurocomputing, 2021, 445: 12–25. doi: 10.1016/J.NEUCOM.2021.02.025
    [21] LIAO Zhaoyang, WANG Qinghui, XIE Hailong, et al. Optimization of robot posture and workpiece setup in robotic milling with stiffness threshold[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(1): 582–593. doi: 10.1109/TMECH.2021.3068599
    [22] VAN DAM E R, HUSSLAGE B, DEN HERTOG D, et al. Maximin Latin hypercube designs in two dimensions[J]. Operations Research, 2007, 55(1): 158–169. doi: 10.1287/opre.1060.0317
    [23] HELSGAUN K. General k-opt submoves for the Lin–Kernighan TSP heuristic[J]. Mathematical Programming Computation, 2009, 1(2): 119–163. doi: 10.1007/s12532-009-0004-6
    [24] HAYES T. R-squared change in structural equation models with latent variables and missing data[J]. Behavior Research Methods, 2021, 53(5): 2127–2157. doi: 10.3758/S13428-020-01532-Y
    [25] MISHRA V N, KUMAR V, PRASAD R, et al. Geographically weighted method integrated with logistic regression for analyzing spatially varying accuracy measures of remote sensing image classification[J]. Journal of the Indian Society of Remote Sensing, 2021, 49(5): 1189–1199. doi: 10.1007/s12524-020-01286-2
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  635
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-04-02
  • 网络出版日期:  2022-04-09
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回